1. Sapphire-Based Optrode for Low Noise Neural Recording and Optogenetic Manipulation.
- Author
-
Xu Y, Li BZ, Huang X, Liu Y, Liang Z, Yang X, Lin L, Wang L, Xia Y, Ridenour M, Huang Y, Zhen Y, Klug A, Pun SH, Lei TC, and Zhang B
- Abstract
Electrophysiological recordings of neurons in deep brain regions using optogenetic stimulation are essential to understanding and regulating the role of complex neural activity in biological behavior and cognitive function. Optogenetic techniques have significantly advanced neuroscience research by enabling the optical manipulation of neural activities. Because of the significance of the technique, constant advancements in implantable optrodes that integrate optical stimulation with low-noise, large-scale electrophysiological recording are in demand to improve the spatiotemporal resolution for various experimental designs and future clinical applications. However, robust and easy-to-use neural optrodes that integrate neural recording arrays with high-intensity light emitting diodes (LEDs) are still lacking. Here, we propose a neural optrode based on Gallium Nitride (GaN) on sapphire technology, which integrates a high-intensity blue LED with a 5x2 recording array monolithically for simultaneous neural recording and optogenetic manipulation. To reduce the noise interference between the recording electrodes and the LED, which is in close physical proximity, three metal grounding interlayers were incorporated within the optrode, and their ability to reduce LED-induced artifacts during neural recording was confirmed through both electromagnetic simulations and experimental demonstrations. The capability of the sapphire optrode to record action potentials has been demonstrated by recording the firing of mitral/tuft cells in the olfactory bulbs of mice in vivo. Additionally, the elevation of action potential firing due to optogenetic stimulation observed using the sapphire probe in medial superior olive (MSO) neurons of the gerbil auditory brainstem confirms the capability of this sapphire optrode to precisely access neural activities in deep brain regions under complex experimental designs.
- Published
- 2024
- Full Text
- View/download PDF