1. Optoelectronic synapses based on a triple cation perovskite and Al/MoO 3 interface for neuromorphic information processing.
- Author
-
Sun H, Wang H, Dong S, Dai S, Li X, Zhang X, Deng L, Liu K, Liu F, Tan H, Xue K, Peng C, Wang J, Li Y, Yu A, Zhu H, and Zhan Y
- Abstract
Optoelectronic synaptic transistors are attractive for applications in next-generation brain-like computation systems, especially for their visible-light operation and in-sensor computing capabilities. However, from a material perspective, it is difficult to build a device that meets expectations in terms of both its functions and power consumption, prompting the call for greater innovation in materials and device construction. In this study, we innovatively combined a novel perovskite carrier supply layer with an Al/MoO
3 interface carrier regulatory layer to fabricate optoelectronic synaptic devices, namely Al/MoO3 /CsFAMA/ITO transistors. The device could mimic a variety of biological synaptic functions and required ultralow-power consumption during operation with an ultrafast speed of >0.1 μs under an optical stimulus of about 3 fJ, which is equivalent to biological synapses. Moreover, Pavlovian conditioning and visual perception tasks could be implemented using the spike-number-dependent plasticity (SNDP) and spike-rate-dependent plasticity (SRDP). This study suggests that the proposed CsFAMA synapse with an Al/MoO3 interface has the potential for ultralow-power neuromorphic information processing., Competing Interests: The authors declare no conflicts of interest., (This journal is © The Royal Society of Chemistry.)- Published
- 2023
- Full Text
- View/download PDF