1. Distinct platelet F-actin patterns and traction forces on von Willebrand factor versus fibrinogen.
- Author
-
Mollica MY, Beussman KM, Kandasamy A, Rodríguez LM, Morales FR, Chen J, Manohar K, Del Álamo JC, López JA, Thomas WE, and Sniadecki NJ
- Subjects
- Fibrinogen metabolism, Blood Platelets metabolism, Actins metabolism, Traction, Platelet Membrane Glycoproteins metabolism, Actin Cytoskeleton metabolism, von Willebrand Factor metabolism, Hemostatics metabolism
- Abstract
Upon vascular injury, platelets form a hemostatic plug by binding to the subendothelium and to each other. Platelet-to-matrix binding is initially mediated by von Willebrand factor (VWF) and platelet-to-platelet binding is mediated mainly by fibrinogen and VWF. After binding, the actin cytoskeleton of a platelet drives its contraction, generating traction forces that are important to the cessation of bleeding. Our understanding of the relationship between adhesive environment, F-actin morphology, and traction forces is limited. Here, we examined F-actin morphology of platelets attached to surfaces coated with fibrinogen and VWF. We identified distinct F-actin patterns induced by these protein coatings and found that these patterns were identifiable into three classifications via machine learning: solid, nodular, and hollow. We observed that traction forces for platelets were significantly higher on VWF than on fibrinogen coatings and these forces varied by F-actin pattern. In addition, we analyzed the F-actin orientation in platelets and noted that their filaments were more circumferential when on fibrinogen coatings and having a hollow F-actin pattern, while they were more radial on VWF and having a solid F-actin pattern. Finally, we noted that subcellular localization of traction forces corresponded to protein coating and F-actin pattern: VWF-bound, solid platelets had higher forces at their central region while fibrinogen-bound, hollow platelets had higher forces at their periphery. These distinct F-actin patterns on fibrinogen and VWF and their differences in F-actin orientation, force magnitude, and force localization could have implications in hemostasis, thrombus architecture, and venous versus arterial thrombosis., Competing Interests: Declaration of interests N.J.S. is a cofounder, board member, and has equity in Stasys Medical Corporation. He is also a scientific advisor and has equity in Curi Bio, Inc., (Copyright © 2023 Biophysical Society. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF