1. The life-saving benefit of dexamethasone in severe COVID-19 is linked to a reversal of monocyte dysregulation.
- Author
-
Knoll R, Helbig ET, Dahm K, Bolaji O, Hamm F, Dietrich O, van Uelft M, Müller S, Bonaguro L, Schulte-Schrepping J, Petrov L, Krämer B, Kraut M, Stubbemann P, Thibeault C, Brumhard S, Theis H, Hack G, De Domenico E, Nattermann J, Becker M, Beyer MD, Hillus D, Georg P, Loers C, Tiedemann J, Tober-Lau P, Lippert L, Millet Pascual-Leone B, Tacke F, Rohde G, Suttorp N, Witzenrath M, Saliba AE, Ulas T, Polansky JK, Sawitzki B, Sander LE, Schultze JL, Aschenbrenner AC, and Kurth F
- Subjects
- Humans, Male, Female, Transcriptome, Middle Aged, Aged, Glucocorticoids therapeutic use, Glucocorticoids pharmacology, Lung pathology, Adult, Dexamethasone pharmacology, Dexamethasone therapeutic use, Monocytes metabolism, Monocytes drug effects, COVID-19 Drug Treatment, COVID-19, SARS-CoV-2 drug effects, Single-Cell Analysis
- Abstract
Dexamethasone is a life-saving treatment for severe COVID-19, yet its mechanism of action is unknown, and many patients deteriorate or die despite timely treatment initiation. Here, we identify dexamethasone treatment-induced cellular and molecular changes associated with improved survival in COVID-19 patients. We observed a reversal of transcriptional hallmark signatures in monocytes associated with severe COVID-19 and the induction of a monocyte substate characterized by the expression of glucocorticoid-response genes. These molecular responses to dexamethasone were detected in circulating and pulmonary monocytes, and they were directly linked to survival. Monocyte single-cell RNA sequencing (scRNA-seq)-derived signatures were enriched in whole blood transcriptomes of patients with fatal outcome in two independent cohorts, highlighting the potential for identifying non-responders refractory to dexamethasone. Our findings link the effects of dexamethasone to specific immunomodulation and reversal of monocyte dysregulation, and they highlight the potential of single-cell omics for monitoring in vivo target engagement of immunomodulatory drugs and for patient stratification for precision medicine approaches., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF