1. Quantum Metric Unveils Defect Freezing in Non-Hermitian Systems.
- Author
-
Sim K, Defenu N, Molignini P, and Chitra R
- Abstract
Non-Hermiticity in quantum Hamiltonians leads to nonunitary time evolution and possibly complex energy eigenvalues, which can lead to a rich phenomenology with no Hermitian counterpart. In this work, we study the dynamics of an exactly solvable non-Hermitian system, hosting both PT-symmetric and PT-broken modes subject to a linear quench. Employing a fully consistent framework, in which the Hilbert space is endowed with a nontrivial dynamical metric, we analyze the dynamics of the generated defects. In contrast to Hermitian systems, our study reveals that PT-broken time evolution leads to defect freezing and hence the violation of adiabaticity. This physics necessitates the so-called metric framework, as it is missed by the oft used approach of normalizing quantities by the time-dependent norm of the state. Our results are relevant for a wide class of experimental systems.
- Published
- 2023
- Full Text
- View/download PDF