1. Species-specific responses of canopy greenness to the extreme droughts of 2018 and 2022 for four abundant tree species in Germany.
- Author
-
Wang Y, Rammig A, Blickensdörfer L, Wang Y, Zhu XX, and Buras A
- Abstract
Germany experienced extreme drought periods in 2018 and 2022, which significantly affected forests. These drought periods were natural experiments, providing valuable insights into how different tree species respond to drought. The quantification of species-specific drought responses may help to identify the most climate-change-resilient tree species, thereby informing effective forest regeneration strategies. In this study, we used remotely sensed peak-season canopy greenness as a proxy for tree vitality to estimate the drought response of four widely abundant tree species in Germany (oak, beech, spruce, and pine). We focused on two questions: (1) How were the four tree species affected by these two droughts? (2) Which environmental parameters primarily determined canopy greenness? To address these questions, we combined a recently published tree species classification map with remotely sensed canopy greenness and environmental variables related to plant available water capacity (PAWC) and atmospheric vapor pressure deficit (VPD). Our results indicate that the more isohydric species featured a greater decline in canopy greenness under these droughts compared to the more anisohydric species despite similar soil moisture conditions. Based on spatial lag models, we found that the influence of PAWC on canopy greenness increases with increasing isohydricity while the influence of VPD decreases. Our statistical analysis indicates that oak was the only species with significantly higher canopy greenness in 2022 compared to 2018. Yet, all species are likely to be susceptible to accumulated drought effects, such as insufficient recovery time and increased vulnerability to biotic pathogens, in the coming years. Our study provides critical insights into the diverse responses of different tree species to changing environments over a large environmental gradient in Central Europe and sheds light on the complex interactions between soil moisture, climate variables, and canopy greenness. These findings contribute to understanding forests' climate-change resilience and may guide forest management and conservation strategies., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF