1. Quinolone bioisosteres of phenolic GluN2B-selective NMDA receptor antagonists.
- Author
-
Rathing F, Schepmann D, and Wünsch B
- Subjects
- Structure-Activity Relationship, Molecular Structure, Phenols pharmacology, Phenols chemistry, Phenols chemical synthesis, Animals, Ligands, Dose-Response Relationship, Drug, Receptors, N-Methyl-D-Aspartate antagonists & inhibitors, Quinolones pharmacology, Quinolones chemistry, Quinolones chemical synthesis
- Abstract
Cyclopenta[g]quinolones of type 4 were designed with the aim to bioisosterically replace the phenol of potent GluN2B ligands such as ifenprodil and Ro 25-6981 by the quinolone system and to restrict the conformational flexibility of the aminopropanol substructure in a cyclopentane system. The designed ligands were synthesized in an eight-step sequence starting with terephthalaldehyde (5). Key steps pf the synthesis were the intramolecular Friedel-Crafts acylation of propionic acids 10 to yield the cyclopenta[g]quinolinediones 11 and the Mannich reaction of diketone 11a followed by conjugate addition at the α,β-unsaturated ketone 12a. Although the quinolones 13a, 15a, and 16a contain an H-bond donor group (secondary lactam) as ifenprodil and Ro 25-6981, they show only moderate GluN2B affinity (K
i > 410 nM). However, the introduction of lipophilic substituents at the quinolone N-atom resulted in more than 10-fold increased GluN2B affinity of the benzyl and benzyloxymethyl derivatives cis-13c (Ko = 36 nM) and 13e (Ko = 27 nM). All compounds are selective over the phencyclidine (PCP) binding site of the N-methyl-D-aspartate (NMDA) receptor. The benzyl derivative 13c showed six- and threefold selectivity over σ1 and σ2 receptors, respectively., (© 2024 The Author(s). Archiv der Pharmazie published by Wiley‐VCH GmbH on behalf of Deutsche Pharmazeutische Gesellschaft.)- Published
- 2024
- Full Text
- View/download PDF