1. Microbial production of food lipids using the oleaginous yeast Apiotrichum brassicae.
- Author
-
Småros F, Vidgren V, Rondou K, Riihinen K, Mohammadi P, Dewettinck K, van Bockstaele F, Koivuranta K, and Sozer N
- Subjects
- Dietary Fats analysis, Dietary Fats metabolism, Animals, Lipids analysis, Milk microbiology, Milk chemistry, Palm Oil chemistry, Saccharomycetales metabolism, Cattle, Stearic Acids metabolism, Stearic Acids analysis, Linoleic Acid analysis, Linoleic Acid metabolism, Fatty Acids analysis, Fatty Acids metabolism, Triglycerides metabolism, Triglycerides analysis
- Abstract
Oleaginous yeasts offer a promising sustainable alternative for producing edible lipids, potentially replacing animal and unsustainable plant fats and oils. In this study, we screened 11 oleaginous yeast species for their lipid profiles and identified Apiotrichum brassicae as the most promising candidate due to its versatility across different growth media. A. brassicae grown in a dairy side stream produced lipids with a composition most similar to cocoa butter, but the stearic acid and linoleic acid content varied greatly when grown on different substrates. We visualised the formation of lipid droplets by digital holotomography. Pilot-scale production was followed by enzymatic and ultrasonic treatment of biomass and heptane/ethanol extraction. The fatty acid (FA) and triacylglycerol (TAG) composition, thermal behaviour, and solid fat content of A. brassicae lipids was compared to benchmarks such as beef fat, cocoa butter, palm oil and milk fat. The FA profile of the A. brassicae lipids shares the same types of fatty acids with cocoa butter, beef fat and palm oil, however concentrations differ resulting in a lower content of saturated FAs. This increased the proportion of unsaturated TAGs, reducing the melting and crystallisation temperatures and the solid fat content. The microbial lipids contained the major TAGs of cocoa butter at similar ratios, resulting in a comparable melting peak and crystallisation peaks similar to the low-melting groups of beef fat and palm oil. Fractionation has the potential to produce beef fat, cocoa butter or palm oil equivalents with desired techno-functional properties. This study demonstrates the potential of A. brassicae to produce tailored lipid profiles for various food applications through strain and process engineering or downstream processing., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF