1. Molecular insights to in vitro biocompatibility of endodontic Pulpotec with macrophages determined by oxidative stress and apoptosis.
- Author
-
Mohanty A, Patro S, Jha E, Patel P, Nandi A, Sinha A, Naser SS, Das A, Panda PK, Rout PK, Mishra R, Kaushik NK, Singh D, Suar M, and Verma SK
- Subjects
- Mice, Animals, RAW 264.7 Cells, Materials Testing, Cell Survival drug effects, Tumor Suppressor Protein p53 metabolism, Dental Cements pharmacology, Dental Cements chemistry, Superoxide Dismutase-1 metabolism, Oxidative Stress drug effects, Apoptosis drug effects, Macrophages drug effects, Macrophages metabolism, Biocompatible Materials pharmacology
- Abstract
Pulp therapy has been emerged as a one of the efficient therapies in the field of endodontics. Among different types of new endodontic materials, pulpotec has been materialized as a recognized material for vital pulp therapy. However, its efficacy has been challenged due to lack of information about its cellular biocompatibility. This study evaluates the mechanistic biocompatibility of pulpotec cement with macrophage cells (RAW 264.7) at cellular and molecular level. The biocompatibility was evaluated using experimental and computational techniques like MTT assay, oxidative stress analysis and apoptosis analysis through flow cytometry and fluorescent microscopy. The results showed concentration-dependent cytotoxicity of pulpotec cement extract to RAW 264.7 cells with an LC 50 of X/10-X/20. The computational analysis depicted the molecular interaction of pulpotec cement extract components with metabolic proteins like Sod1 and p53. The study revealed the effects of Pulpotec cement's extract, showing a concentration-dependent induction of oxidative stress and apoptosis. These effects were due to influential structural and functional abnormalities in the Sod1 and p53 proteins, caused by their molecular interaction with internalized components of Pulpotec cement. The study provided a detailed view on the utility of Pulpotec in endodontic applications, highlighting its biomedical aspects., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper, (Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF