1. The Use of Nitrosative Stress Molecules as Potential Diagnostic Biomarkers in Multiple Sclerosis.
- Author
-
Räuber S, Förster M, Schüller J, Willison A, Golombeck KS, Schroeter CB, Oeztuerk M, Jansen R, Huntemann N, Nelke C, Korsen M, Fischer K, Kerkhoff R, Leven Y, Kirschner P, Kölsche T, Nikolov P, Mehsin M, Marae G, Kokott A, Pul D, Schulten J, Vogel N, Ingwersen J, Ruck T, Pawlitzki M, Meuth SG, Melzer N, and Kremer D
- Subjects
- Humans, Nitrosative Stress, Central Nervous System, Multiple Sclerosis diagnosis, Medically Unexplained Symptoms, Autoimmune Diseases, Multiple Sclerosis, Relapsing-Remitting
- Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) of still unclear etiology. In recent years, the search for biomarkers facilitating its diagnosis, prognosis, therapy response, and other parameters has gained increasing attention. In this regard, in a previous meta-analysis comprising 22 studies, we found that MS is associated with higher nitrite/nitrate (NOx) levels in the cerebrospinal fluid (CSF) compared to patients with non-inflammatory other neurological diseases (NIOND). However, many of the included studies did not distinguish between the different clinical subtypes of MS, included pre-treated patients, and inclusion criteria varied. As a follow-up to our meta-analysis, we therefore aimed to analyze the serum and CSF NOx levels in clinically well-defined cohorts of treatment-naïve MS patients compared to patients with somatic symptom disorder. To this end, we analyzed the serum and CSF levels of NOx in 117 patients (71 relapsing-remitting (RR) MS, 16 primary progressive (PP) MS, and 30 somatic symptom disorder). We found that RRMS and PPMS patients had higher serum NOx levels compared to somatic symptom disorder patients. This difference remained significant in the subgroup of MRZ-negative RRMS patients. In conclusion, the measurement of NOx in the serum might indeed be a valuable tool in supporting MS diagnosis.
- Published
- 2024
- Full Text
- View/download PDF