33 results on '"Turaev D"'
Search Results
2. Leonid Shilnikov and mathematical theory of dynamical chaos.
- Author
-
Gonchenko S, Kazakov A, Turaev D, and Shilnikov AL
- Published
- 2022
- Full Text
- View/download PDF
3. Doubling of invariant curves and chaos in three-dimensional diffeomorphisms.
- Author
-
Gonchenko AS, Gonchenko SV, and Turaev D
- Abstract
This paper gives a review of doubling bifurcations of closed invariant curves. We also discuss the role of the curve-doubling bifurcations in the formation of chaotic dynamics. In particular, we study scenarios of the emergence of discrete Lorenz and Shilnikov attractors in three-dimensional Hénon maps.
- Published
- 2021
- Full Text
- View/download PDF
4. A criterion for mixed dynamics in two-dimensional reversible maps.
- Author
-
Turaev D
- Abstract
We give conditions for non-conservative dynamics in reversible maps with transverse and non-transverse homoclinic orbits.
- Published
- 2021
- Full Text
- View/download PDF
5. Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta.
- Author
-
Moeller FU, Webster NS, Herbold CW, Behnam F, Domman D, Albertsen M, Mooshammer M, Markert S, Turaev D, Becher D, Rattei T, Schweder T, Richter A, Watzka M, Nielsen PH, and Wagner M
- Subjects
- Animals, Archaea isolation & purification, Chemoautotrophic Growth physiology, In Situ Hybridization, Fluorescence, Nitrification physiology, Nitrites metabolism, Oxidation-Reduction, Phylogeny, Soil Microbiology, Ammonia metabolism, Archaea genetics, Archaea metabolism, Porifera microbiology
- Abstract
Marine sponges represent one of the few eukaryotic groups that frequently harbour symbiotic members of the Thaumarchaeota, which are important chemoautotrophic ammonia-oxidizers in many environments. However, in most studies, direct demonstration of ammonia-oxidation by these archaea within sponges is lacking, and little is known about sponge-specific adaptations of ammonia-oxidizing archaea (AOA). Here, we characterized the thaumarchaeal symbiont of the marine sponge Ianthella basta using metaproteogenomics, fluorescence in situ hybridization, qPCR and isotope-based functional assays. 'Candidatus Nitrosospongia ianthellae' is only distantly related to cultured AOA. It is an abundant symbiont that is solely responsible for nitrite formation from ammonia in I. basta that surprisingly does not harbour nitrite-oxidizing microbes. Furthermore, this AOA is equipped with an expanded set of extracellular subtilisin-like proteases, a metalloprotease unique among archaea, as well as a putative branched-chain amino acid ABC transporter. This repertoire is strongly indicative of a mixotrophic lifestyle and is (with slight variations) also found in other sponge-associated, but not in free-living AOA. We predict that this feature as well as an expanded and unique set of secreted serpins (protease inhibitors), a unique array of eukaryotic-like proteins, and a DNA-phosporothioation system, represent important adaptations of AOA to life within these ancient filter-feeding animals., (© 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.)
- Published
- 2019
- Full Text
- View/download PDF
6. Similarity and Strength of Glomerular Odor Representations Define a Neural Metric of Sniff-Invariant Discrimination Time.
- Author
-
Bhattacharjee AS, Konakamchi S, Turaev D, Vincis R, Nunes D, Dingankar AA, Spors H, Carleton A, Kuner T, and Abraham NM
- Subjects
- Action Potentials physiology, Animals, Discrimination, Psychological drug effects, Learning drug effects, Learning physiology, Mice, Mice, Inbred C57BL, Odorants, Olfactory Bulb drug effects, Olfactory Pathways drug effects, Reaction Time physiology, Wakefulness drug effects, Wakefulness physiology, Behavior, Animal physiology, Discrimination, Psychological physiology, Olfactory Bulb physiology, Olfactory Pathways physiology, Smell physiology
- Abstract
The olfactory environment is first represented by glomerular activity patterns in the olfactory bulb. It remains unclear how these representations intersect with sampling behavior to account for the time required to discriminate odors. Using different chemical classes, we investigate glomerular representations and sniffing behavior during olfactory decision-making. Mice rapidly discriminate odorants and learn to increase sniffing frequency at a fixed latency after trial initiation, independent of odor identity. Relative to the increase in sniffing frequency, monomolecular odorants are discriminated within 10-40 ms, while binary mixtures require an additional 60-70 ms. Intrinsic imaging of glomerular activity in anesthetized and awake mice reveals that Euclidean distance between activity patterns and the time needed for discriminations are anti-correlated. Therefore, the similarity of glomerular patterns and their activation strengths, rather than sampling behavior, define the extent of neuronal processing required for odor discrimination, establishing a neural metric to predict olfactory discrimination time., (Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
7. Remarkable charged particle dynamics near magnetic field null lines.
- Author
-
Neishtadt A, Artemyev A, and Turaev D
- Abstract
The study of charged-particle motion in electromagnetic fields is a rich source of problems, models, and new phenomena for nonlinear dynamics. The case of a strong magnetic field is well studied in the framework of a guiding center theory, which is based on conservation of an adiabatic invariant-the magnetic moment. This theory ceases to work near a line on which the magnetic field vanishes-the magnetic field null line. In this paper, we show that the existence of these lines leads to remarkable phenomena which are new both for nonlinear dynamics in general and for the theory of charged-particle motion. We consider the planar motion of a charged particle in a strong stationary perpendicular magnetic field with a null line and a strong electric field. We show that particle dynamics switch between a slow guiding center motion and the fast traverse along a segment of the magnetic field null line. This segment is the same (in the principal approximation) for all particles with the same total energy. During the phase of a guiding center motion, the magnetic moment of particle's Larmor rotation stays approximately constant, i.e., it is an adiabatic invariant. However, upon each traversing of the null line, the magnetic moment changes in a random fashion, causing the particle to choose a new trajectory of the guiding center motion. This results in a stationary distribution of the magnetic moment, which only depends on the particle's total energy. The jumps in the adiabatic invariant are described by Painlevé II equation.
- Published
- 2019
- Full Text
- View/download PDF
8. The Iceman's Last Meal Consisted of Fat, Wild Meat, and Cereals.
- Author
-
Maixner F, Turaev D, Cazenave-Gassiot A, Janko M, Krause-Kyora B, Hoopmann MR, Kusebauch U, Sartain M, Guerriero G, O'Sullivan N, Teasdale M, Cipollini G, Paladin A, Mattiangeli V, Samadelli M, Tecchiati U, Putzer A, Palazoglu M, Meissen J, Lösch S, Rausch P, Baines JF, Kim BJ, An HJ, Gostner P, Egarter-Vigl E, Malfertheiner P, Keller A, Stark RW, Wenk M, Bishop D, Bradley DG, Fiehn O, Engstrand L, Moritz RL, Doble P, Franke A, Nebel A, Oeggl K, Rattei T, Grimm R, and Zink A
- Subjects
- Archaeology, Austria, Dietary Fats, Edible Grain, History, Ancient, Humans, Italy, Male, Meat, Diet history, Mummies
- Abstract
The history of humankind is marked by the constant adoption of new dietary habits affecting human physiology, metabolism, and even the development of nutrition-related disorders. Despite clear archaeological evidence for the shift from hunter-gatherer lifestyle to agriculture in Neolithic Europe [1], very little information exists on the daily dietary habits of our ancestors. By undertaking a complementary -omics approach combined with microscopy, we analyzed the stomach content of the Iceman, a 5,300-year-old European glacier mummy [2, 3]. He seems to have had a remarkably high proportion of fat in his diet, supplemented with fresh or dried wild meat, cereals, and traces of toxic bracken. Our multipronged approach provides unprecedented analytical depth, deciphering the nutritional habit, meal composition, and food-processing methods of this Copper Age individual., (Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
9. Reef invertebrate viromics: diversity, host specificity and functional capacity.
- Author
-
Laffy PW, Wood-Charlson EM, Turaev D, Jutz S, Pascelli C, Botté ES, Bell SC, Peirce TE, Weynberg KD, van Oppen MJH, Rattei T, and Webster NS
- Subjects
- Animals, DNA, Viral genetics, Ecosystem, Genome, Viral, Host Specificity, Metagenomics, Phylogeny, Seawater virology, Viruses isolation & purification, Anthozoa virology, Coral Reefs, Viruses classification, Viruses genetics
- Abstract
Recent metagenomic analyses have revealed a high diversity of viruses in the pelagic ocean and uncovered clear habitat-specific viral distribution patterns. Conversely, similar insights into the composition, host specificity and function of viruses associated with marine organisms have been limited by challenges associated with sampling and computational analysis. Here, we performed targeted viromic analysis of six coral reef invertebrate species and their surrounding seawater to deliver taxonomic and functional profiles of viruses associated with reef organisms. Sponges and corals' host species-specific viral assemblages with low sequence identity to known viral genomes. While core viral genes involved in capsid formation, tail structure and infection mechanisms were observed across all reef samples, auxiliary genes including those involved in herbicide resistance and viral pathogenesis pathways such as host immune suppression were differentially enriched in reef hosts. Utilising a novel OTU based assessment, we also show a prevalence of dsDNA viruses belonging to the Mimiviridae, Caudovirales and Phycodnaviridae in reef environments and further highlight the abundance of ssDNA viruses belonging to the Circoviridae, Parvoviridae, Bidnaviridae and Microviridae in reef invertebrates. These insights into coral reef viruses provide an important framework for future research into how viruses contribute to the health and evolution of reef organisms., (© 2018 Commonwealth of Australia. Environmental Microbiology © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
10. Equilibration of energy in slow-fast systems.
- Author
-
Shah K, Turaev D, Gelfreich V, and Rom-Kedar V
- Abstract
Ergodicity is a fundamental requirement for a dynamical system to reach a state of statistical equilibrium. However, in systems with several characteristic timescales, the ergodicity of the fast subsystem impedes the equilibration of the whole system because of the presence of an adiabatic invariant. In this paper, we show that violation of ergodicity in the fast dynamics can drive the whole system to equilibrium. To show this principle, we investigate the dynamics of springy billiards, which are mechanical systems composed of a small particle bouncing elastically in a bounded domain, where one of the boundary walls has finite mass and is attached to a linear spring. Numerical simulations show that the springy billiard systems approach equilibrium at an exponential rate. However, in the limit of vanishing particle-to-wall mass ratio, the equilibration rates remain strictly positive only when the fast particle dynamics reveal two or more ergodic components for a range of wall positions. For this case, we show that the slow dynamics of the moving wall can be modeled by a random process. Numerical simulations of the corresponding springy billiards and their random models show equilibration with similar positive rates., Competing Interests: The authors declare no conflict of interest., (Copyright © 2017 the Author(s). Published by PNAS.)
- Published
- 2017
- Full Text
- View/download PDF
11. Coral-associated viral communities show high levels of diversity and host auxiliary functions.
- Author
-
Weynberg KD, Laffy PW, Wood-Charlson EM, Turaev D, Rattei T, Webster NS, and van Oppen MJH
- Abstract
Stony corals (Scleractinia) are marine invertebrates that form the foundation and framework upon which tropical reefs are built. The coral animal associates with a diverse microbiome comprised of dinoflagellate algae and other protists, bacteria, archaea, fungi and viruses. Using a metagenomics approach, we analysed the DNA and RNA viral assemblages of seven coral species from the central Great Barrier Reef (GBR), demonstrating that tailed bacteriophages of the Caudovirales dominate across all species examined, and ssDNA viruses, notably the Microviridae , are also prevalent. Most sequences with matches to eukaryotic viruses were assigned to six viral families, including four Nucleocytoplasmic Large DNA Viruses (NCLDVs) families: Iridoviridae, Phycodnaviridae, Mimiviridae, and Poxviridae , as well as Retroviridae and Polydnaviridae . Contrary to previous findings, Herpesvirales were rare in these GBR corals. Sequences of a ssRNA virus with similarities to the dinornavirus, Heterocapsa circularisquama ssRNA virus of the Alvernaviridae that infects free-living dinoflagellates, were observed in three coral species. We also detected viruses previously undescribed from the coral holobiont, including a virus that targets fungi associated with the coral species Acropora tenuis . Functional analysis of the assembled contigs indicated a high prevalence of latency-associated genes in the coral-associated viral assemblages, several host-derived auxiliary metabolic genes (AMGs) for photosynthesis ( psbA , psbD genes encoding the photosystem II D1 and D2 proteins respectively), as well as potential nematocyst toxins and antioxidants (genes encoding green fluorescent-like chromoprotein). This study expands the currently limited knowledge on coral-associated viruses by characterising viral composition and function across seven GBR coral species., Competing Interests: Thomas Rattei is an Academic Editor for PeerJ.
- Published
- 2017
- Full Text
- View/download PDF
12. Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software.
- Author
-
Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I, Majda S, Fiedler J, Dahms E, Bremges A, Fritz A, Garrido-Oter R, Jørgensen TS, Shapiro N, Blood PD, Gurevich A, Bai Y, Turaev D, DeMaere MZ, Chikhi R, Nagarajan N, Quince C, Meyer F, Balvočiūtė M, Hansen LH, Sørensen SJ, Chia BKH, Denis B, Froula JL, Wang Z, Egan R, Don Kang D, Cook JJ, Deltel C, Beckstette M, Lemaitre C, Peterlongo P, Rizk G, Lavenier D, Wu YW, Singer SW, Jain C, Strous M, Klingenberg H, Meinicke P, Barton MD, Lingner T, Lin HH, Liao YC, Silva GGZ, Cuevas DA, Edwards RA, Saha S, Piro VC, Renard BY, Pop M, Klenk HP, Göker M, Kyrpides NC, Woyke T, Vorholt JA, Schulze-Lefert P, Rubin EM, Darling AE, Rattei T, and McHardy AC
- Subjects
- Algorithms, Benchmarking, Sequence Analysis, DNA, Metagenomics, Software
- Abstract
Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.
- Published
- 2017
- Full Text
- View/download PDF
13. Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter affected by high-fat diets.
- Author
-
Walker A, Pfitzner B, Harir M, Schaubeck M, Calasan J, Heinzmann SS, Turaev D, Rattei T, Endesfelder D, Castell WZ, Haller D, Schmid M, Hartmann A, and Schmitt-Kopplin P
- Subjects
- Animals, Chromatography, Liquid, Mass Spectrometry, Mice, Bacteroidetes chemistry, Bacteroidetes metabolism, Cecum microbiology, Diet, High-Fat, Gastrointestinal Microbiome drug effects, Lipids analysis
- Abstract
The gut microbiota generates a huge pool of unknown metabolites, and their identification and characterization is a key challenge in metabolomics. However, there are still gaps on the studies of gut microbiota and their chemical structures. In this investigation, an unusual class of bacterial sulfonolipids (SLs) is detected in mouse cecum, which was originally found in environmental microbes. We have performed a detailed molecular level characterization of this class of lipids by combining high-resolution mass spectrometry and liquid chromatography analysis. Eighteen SLs that differ in their capnoid and fatty acid chain compositions were identified. The SL called "sulfobacin B" was isolated, characterized, and was significantly increased in mice fed with high-fat diets. To reveal bacterial producers of SLs, metagenome analysis was acquired and only two bacterial genera, i.e., Alistipes and Odoribacter, were revealed to be responsible for their production. This knowledge enables explaining a part of the molecular complexity introduced by microbes to the mammalian gastrointestinal tract and can be used as chemotaxonomic evidence in gut microbiota.
- Published
- 2017
- Full Text
- View/download PDF
14. Unraveling the microbial processes of black band disease in corals through integrated genomics.
- Author
-
Sato Y, Ling EY, Turaev D, Laffy P, Weynberg KD, Rattei T, Willis BL, and Bourne DG
- Subjects
- Animals, Cyanobacteria metabolism, Gene Expression Profiling, Metagenome, Metagenomics, Models, Biological, Photosynthesis, Sulfides metabolism, Transcriptome genetics, Anthozoa genetics, Anthozoa microbiology, Genomics
- Abstract
Coral disease outbreaks contribute to the ongoing degradation of reef ecosystems, however, microbial mechanisms underlying the onset and progression of most coral diseases are poorly understood. Black band disease (BBD) manifests as a cyanobacterial-dominated microbial mat that destroys coral tissues as it rapidly spreads over coral colonies. To elucidate BBD pathogenesis, we apply a comparative metagenomic and metatranscriptomic approach to identify taxonomic and functional changes within microbial lesions during in-situ development of BBD from a comparatively benign stage termed cyanobacterial patches. Results suggest that photosynthetic CO
2 -fixation in Cyanobacteria substantially enhances productivity of organic matter within the lesion during disease development. Photosynthates appear to subsequently promote sulfide-production by Deltaproteobacteria, facilitating the major virulence factor of BBD. Interestingly, our metagenome-enabled transcriptomic analysis reveals that BBD-associated cyanobacteria have a putative mechanism that enables them to adapt to higher levels of hydrogen sulfide within lesions, underpinning the pivotal roles of the dominant cyanobacterium within the polymicrobial lesions during the onset of BBD. The current study presents sequence-based evidence derived from whole microbial communities that unravel the mechanism of development and progression of BBD.- Published
- 2017
- Full Text
- View/download PDF
15. HoloVir: A Workflow for Investigating the Diversity and Function of Viruses in Invertebrate Holobionts.
- Author
-
Laffy PW, Wood-Charlson EM, Turaev D, Weynberg KD, Botté ES, van Oppen MJ, Webster NS, and Rattei T
- Abstract
Abundant bioinformatics resources are available for the study of complex microbial metagenomes, however their utility in viral metagenomics is limited. HoloVir is a robust and flexible data analysis pipeline that provides an optimized and validated workflow for taxonomic and functional characterization of viral metagenomes derived from invertebrate holobionts. Simulated viral metagenomes comprising varying levels of viral diversity and abundance were used to determine the optimal assembly and gene prediction strategy, and multiple sequence assembly methods and gene prediction tools were tested in order to optimize our analysis workflow. HoloVir performs pairwise comparisons of single read and predicted gene datasets against the viral RefSeq database to assign taxonomy and additional comparison to phage-specific and cellular markers is undertaken to support the taxonomic assignments and identify potential cellular contamination. Broad functional classification of the predicted genes is provided by assignment of COG microbial functional category classifications using EggNOG and higher resolution functional analysis is achieved by searching for enrichment of specific Swiss-Prot keywords within the viral metagenome. Application of HoloVir to viral metagenomes from the coral Pocillopora damicornis and the sponge Rhopaloeides odorabile demonstrated that HoloVir provides a valuable tool to characterize holobiont viral communities across species, environments, or experiments.
- Published
- 2016
- Full Text
- View/download PDF
16. Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies.
- Author
-
Güllert S, Fischer MA, Turaev D, Noebauer B, Ilmberger N, Wemheuer B, Alawi M, Rattei T, Daniel R, Schmitz RA, Grundhoff A, and Streit WR
- Abstract
Background: The diverse microbial communities in agricultural biogas fermenters are assumed to be well adapted for the anaerobic transformation of plant biomass to methane. Compared to natural systems, biogas reactors are limited in their hydrolytic potential. The reasons for this are not understood., Results: In this paper, we show that a typical industrial biogas reactor fed with maize silage, cow manure, and chicken manure has relatively lower hydrolysis rates compared to feces samples from herbivores. We provide evidence that on average, 2.5 genes encoding cellulolytic GHs/Mbp were identified in the biogas fermenter compared to 3.8 in the elephant feces and 3.2 in the cow rumen data sets. The ratio of genes coding for cellulolytic GH enzymes affiliated with the Firmicutes versus the Bacteroidetes was 2.8:1 in the biogas fermenter compared to 1:1 in the elephant feces and 1.4:1 in the cow rumen sample. Furthermore, RNA-Seq data indicated that highly transcribed cellulases in the biogas fermenter were four times more often affiliated with the Firmicutes compared to the Bacteroidetes, while an equal distribution of these enzymes was observed in the elephant feces sample., Conclusions: Our data indicate that a relatively lower abundance of bacteria affiliated with the phylum of Bacteroidetes and, to some extent, Fibrobacteres is associated with a decreased richness of predicted lignocellulolytic enzymes in biogas fermenters. This difference can be attributed to a partial lack of genes coding for cellulolytic GH enzymes derived from bacteria which are affiliated with the Fibrobacteres and, especially, the Bacteroidetes. The partial deficiency of these genes implies a potentially important limitation in the biogas fermenter with regard to the initial hydrolysis of biomass. Based on these findings, we speculate that increasing the members of Bacteroidetes and Fibrobacteres in biogas fermenters will most likely result in an increased hydrolytic performance.
- Published
- 2016
- Full Text
- View/download PDF
17. High definition for systems biology of microbial communities: metagenomics gets genome-centric and strain-resolved.
- Author
-
Turaev D and Rattei T
- Subjects
- Ecology methods, Evolution, Molecular, Genetic Variation, Genome, Bacterial, Bacteria classification, Bacteria genetics, Metagenomics methods, Microbial Consortia genetics, Systems Biology
- Abstract
The systems biology of microbial communities, organismal communities inhabiting all ecological niches on earth, has in recent years been strongly facilitated by the rapid development of experimental, sequencing and data analysis methods. Novel experimental approaches and binning methods in metagenomics render the semi-automatic reconstructions of near-complete genomes of uncultivable bacteria possible, while advances in high-resolution amplicon analysis allow for efficient and less biased taxonomic community characterization. This will also facilitate predictive modeling approaches, hitherto limited by the low resolution of metagenomic data. In this review, we pinpoint the most promising current developments in metagenomics. They facilitate microbial systems biology towards a systemic understanding of mechanisms in microbial communities with scopes of application in many areas of our daily life., (Copyright © 2016 Elsevier Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
18. Exponential energy growth due to slow parameter oscillations in quantum mechanical systems.
- Author
-
Turaev D
- Abstract
It is shown that a periodic emergence and destruction of an additional quantum number leads to an exponential growth of energy of a quantum mechanical system subjected to a slow periodic variation of parameters. The main example is given by systems (e.g., quantum billiards and quantum graphs) with periodically divided configuration space. In special cases, the process can also lead to a long period of cooling that precedes the acceleration, and to the desertion of the states with a particular value of the quantum number.
- Published
- 2016
- Full Text
- View/download PDF
19. The 5300-year-old Helicobacter pylori genome of the Iceman.
- Author
-
Maixner F, Krause-Kyora B, Turaev D, Herbig A, Hoopmann MR, Hallows JL, Kusebauch U, Vigl EE, Malfertheiner P, Megraud F, O'Sullivan N, Cipollini G, Coia V, Samadelli M, Engstrand L, Linz B, Moritz RL, Grimm R, Krause J, Nebel A, Moodley Y, Rattei T, and Zink A
- Subjects
- Asia, Chromosome Mapping, DNA, Bacterial genetics, DNA, Bacterial isolation & purification, Europe, Helicobacter pylori isolation & purification, Human Migration, Humans, Ice Cover microbiology, Mummies microbiology, Phylogeny, Phylogeography, Sequence Analysis, DNA, Genome, Bacterial genetics, Helicobacter Infections microbiology, Helicobacter pylori genetics, Hybridization, Genetic, Stomach microbiology
- Abstract
The stomach bacterium Helicobacter pylori is one of the most prevalent human pathogens. It has dispersed globally with its human host, resulting in a distinct phylogeographic pattern that can be used to reconstruct both recent and ancient human migrations. The extant European population of H. pylori is known to be a hybrid between Asian and African bacteria, but there exist different hypotheses about when and where the hybridization took place, reflecting the complex demographic history of Europeans. Here, we present a 5300-year-old H. pylori genome from a European Copper Age glacier mummy. The "Iceman" H. pylori is a nearly pure representative of the bacterial population of Asian origin that existed in Europe before hybridization, suggesting that the African population arrived in Europe within the past few thousand years., (Copyright © 2016, American Association for the Advancement of Science.)
- Published
- 2016
- Full Text
- View/download PDF
20. Leaky Fermi accelerators.
- Author
-
Shah K, Gelfreich V, Rom-Kedar V, and Turaev D
- Abstract
A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for a sufficiently long time. The heat production is found to depend strongly on the type of Fermi accelerator. An ergodic accelerator, i.e., one that has a single ergodic component, produces a weaker energy flow than a multicomponent accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multicomponent case the energy flow may be significantly increased by shrinking the hole size.
- Published
- 2015
- Full Text
- View/download PDF
21. Exponential energy growth in adiabatically changing Hamiltonian systems.
- Author
-
Pereira T and Turaev D
- Abstract
We show that the mixed phase space dynamics of a typical smooth Hamiltonian system universally leads to a sustained exponential growth of energy at a slow periodic variation of parameters. We build a model for this process in terms of geometric Brownian motion with a positive drift, and relate it to the steady entropy increase after each period of the parameters variation.
- Published
- 2015
- Full Text
- View/download PDF
22. A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes.
- Author
-
Ilmberger N, Güllert S, Dannenberg J, Rabausch U, Torres J, Wemheuer B, Alawi M, Poehlein A, Chow J, Turaev D, Rattei T, Schmeisser C, Salomon J, Olsen PB, Daniel R, Grundhoff A, Borchert MS, and Streit WR
- Subjects
- Animals, Biomass, Data Collection, Female, Glycoside Hydrolases genetics, Male, Phylogeny, Breast Feeding, Elephants microbiology, Feces microbiology, Glycoside Hydrolases metabolism, Metagenomics, Microbiota, Plants
- Abstract
A phylogenetic and metagenomic study of elephant feces samples (derived from a three-weeks-old and a six-years-old Asian elephant) was conducted in order to describe the microbiota inhabiting this large land-living animal. The microbial diversity was examined via 16S rRNA gene analysis. We generated more than 44,000 GS-FLX+454 reads for each animal. For the baby elephant, 380 operational taxonomic units (OTUs) were identified at 97% sequence identity level; in the six-years-old animal, close to 3,000 OTUs were identified, suggesting high microbial diversity in the older animal. In both animals most OTUs belonged to Bacteroidetes and Firmicutes. Additionally, for the baby elephant a high number of Proteobacteria was detected. A metagenomic sequencing approach using Illumina technology resulted in the generation of 1.1 Gbp assembled DNA in contigs with a maximum size of 0.6 Mbp. A KEGG pathway analysis suggested high metabolic diversity regarding the use of polymers and aromatic and non-aromatic compounds. In line with the high phylogenetic diversity, a surprising and not previously described biodiversity of glycoside hydrolase (GH) genes was found. Enzymes of 84 GH families were detected. Polysaccharide utilization loci (PULs), which are found in Bacteroidetes, were highly abundant in the dataset; some of these comprised cellulase genes. Furthermore the highest coverage for GH5 and GH9 family enzymes was detected for Bacteroidetes, suggesting that bacteria of this phylum are mainly responsible for the degradation of cellulose in the Asian elephant. Altogether, this study delivers insight into the biomass conversion by one of the largest plant-fed and land-living animals.
- Published
- 2014
- Full Text
- View/download PDF
23. The evolutionary dynamics of protein-protein interaction networks inferred from the reconstruction of ancient networks.
- Author
-
Jin Y, Turaev D, Weinmaier T, Rattei T, and Makse HA
- Subjects
- Algorithms, Animals, Databases, Protein, Gene Duplication, Genetic Variation, Humans, Models, Genetic, Models, Molecular, Proteins chemistry, Proteins genetics, Evolution, Molecular, Protein Interaction Domains and Motifs genetics
- Abstract
Cellular functions are based on the complex interplay of proteins, therefore the structure and dynamics of these protein-protein interaction (PPI) networks are the key to the functional understanding of cells. In the last years, large-scale PPI networks of several model organisms were investigated. A number of theoretical models have been developed to explain both the network formation and the current structure. Favored are models based on duplication and divergence of genes, as they most closely represent the biological foundation of network evolution. However, studies are often based on simulated instead of empirical data or they cover only single organisms. Methodological improvements now allow the analysis of PPI networks of multiple organisms simultaneously as well as the direct modeling of ancestral networks. This provides the opportunity to challenge existing assumptions on network evolution. We utilized present-day PPI networks from integrated datasets of seven model organisms and developed a theoretical and bioinformatic framework for studying the evolutionary dynamics of PPI networks. A novel filtering approach using percolation analysis was developed to remove low confidence interactions based on topological constraints. We then reconstructed the ancient PPI networks of different ancestors, for which the ancestral proteomes, as well as the ancestral interactions, were inferred. Ancestral proteins were reconstructed using orthologous groups on different evolutionary levels. A stochastic approach, using the duplication-divergence model, was developed for estimating the probabilities of ancient interactions from today's PPI networks. The growth rates for nodes, edges, sizes and modularities of the networks indicate multiplicative growth and are consistent with the results from independent static analysis. Our results support the duplication-divergence model of evolution and indicate fractality and multiplicative growth as general properties of the PPI network structure and dynamics.
- Published
- 2013
- Full Text
- View/download PDF
24. Fermi acceleration and adiabatic invariants for non-autonomous billiards.
- Author
-
Gelfreich V, Rom-Kedar V, and Turaev D
- Abstract
Recent results concerned with the energy growth of particles inside a container with slowly moving walls are summarized, augmented, and discussed. For breathing bounded domains with smooth boundaries, it is proved that for all initial conditions the acceleration is at most exponential. Anosov-Kasuga averaging theory is reviewed in the application to the non-autonomous billiards, and the results are corroborated by numerical simulations. A stochastic description is proposed which implies that for periodically perturbed ergodic and mixing billiards averaged particle energy grows quadratically in time (e.g., exponential acceleration has zero probability). Then, a proof that in non-integrable breathing billiards some trajectories do accelerate exponentially is reviewed. Finally, a unified view on the recently constructed families of non-ergodic billiards that robustly admit a large set of exponentially accelerating particles is presented.
- Published
- 2012
- Full Text
- View/download PDF
25. Long-range interaction and synchronization of oscillating dissipative solitons.
- Author
-
Turaev D, Vladimirov AG, and Zelik S
- Abstract
We study the interaction of well-separated oscillating localized structures (oscillons). We show that oscillons emit weakly decaying dispersive waves, which lead to the formation of bound states due to harmonic synchronization. We also show that in optical applications the Andronov-Hopf bifurcation of stationary localized structures leads to a drastic increase in their interaction strength.
- Published
- 2012
- Full Text
- View/download PDF
26. Billiards: a singular perturbation limit of smooth Hamiltonian flows.
- Author
-
Rom-Kedar V and Turaev D
- Abstract
Nonlinear multi-dimensional Hamiltonian systems that are not near integrable typically have mixed phase space and a plethora of instabilities. Hence, it is difficult to analyze them, to visualize them, or even to interpret their numerical simulations. We survey an emerging methodology for analyzing a class of such systems: Hamiltonians with steep potentials that limit to billiards.
- Published
- 2012
- Full Text
- View/download PDF
27. Robust exponential acceleration in time-dependent billiards.
- Author
-
Gelfreich V, Rom-Kedar V, Shah K, and Turaev D
- Abstract
A class of nonrelativistic particle accelerators in which the majority of particles gain energy at an exponential rate is constructed. The class includes ergodic billiards with a piston that moves adiabatically and is removed adiabatically in a periodic fashion. The phenomenon is robust: deformations that keep the chaotic character of the billiard retain the exponential energy growth. The growth rate is found analytically and is, thus, controllable. Numerical simulations corroborate the analytic predictions with good precision. The acceleration mechanism has a natural thermodynamical interpretation and is applied to a hot dilute gas of repelling particles.
- Published
- 2011
- Full Text
- View/download PDF
28. Exponential energy growth in a Fermi accelerator.
- Author
-
Shah K, Turaev D, and Rom-Kedar V
- Abstract
An unbounded energy growth of particles bouncing off two-dimensional (2D) smoothly oscillating polygons is observed. Notably, such billiards have zero Lyapunov exponents in the static case. For a special 2D polygon geometry--a rectangle with a vertically oscillating horizontal bar--we show that this energy growth is not only unbounded but also exponential in time. For the energy averaged over an ensemble of initial conditions, we derive an a priori expression for the rate of the exponential growth as a function of the geometry and the ensemble type. We demonstrate numerically that the ensemble averaged energy indeed grows exponentially, at a close to the analytically predicted rate-namely, the process is controllable.
- Published
- 2010
- Full Text
- View/download PDF
29. Spontaneous motion of cavity solitons induced by a delayed feedback.
- Author
-
Tlidi M, Vladimirov AG, Pieroux D, and Turaev D
- Abstract
We study the properties of 2D cavity solitons in a coherently driven optical resonator subjected to a delayed feedback. The delay is found to induce a spontaneous motion of a single cavity soliton that is stationary and stable otherwise. This behavior occurs when the product of the delay time and the feedback strength exceeds some critical value. We derive an analytical formula for the speed of a moving soliton. Numerical results are in good agreement with analytical predictions.
- Published
- 2009
- Full Text
- View/download PDF
30. Chaotic soliton walk in periodically modulated media.
- Author
-
Turaev D, Radziunas M, and Vladimirov AG
- Abstract
We show that a weak transverse spatial modulation in (2+1) nonlinear Schrödinger-type equation can result in nontrivial dynamics of a radially symmetric soliton. We provide examples of chaotic soliton motion in periodic media both for conservative and dissipative cases. We show that complex dynamics can persist even for soliton sizes greater than the modulation period.
- Published
- 2008
- Full Text
- View/download PDF
31. Chaotic bound state of localized structures in the complex Ginzburg-Landau equation.
- Author
-
Turaev D, Vladimirov AG, and Zelik S
- Abstract
Stable dynamic bound states of dissipative localized structures are found. It is characterized by chaotic oscillations of distance between the localized structures, their phase difference, and the center of mass velocity.
- Published
- 2007
- Full Text
- View/download PDF
32. Delay differential equations for mode-locked semiconductor lasers.
- Author
-
Vladimirov AG, Turaev D, and Kozyreff G
- Abstract
We propose a new model for passive mode locking that is a set of ordinary delay differential equations. We assume a ring-cavity geometry and Lorentzian spectral filtering of the pulses but do not use small gain and loss and weak saturation approximations. By means of a continuation method, we study mode-locking solutions and their stability. We find that stable mode locking can exist even when the nonlasing state between pulses becomes unstable.
- Published
- 2004
- Full Text
- View/download PDF
33. Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits.
- Author
-
Gonchenko SV, Shil'nikov LP, and Turaev DV
- Abstract
Recent results describing non-trivial dynamical phenomena in systems with homoclinic tangencies are represented. Such systems cover a large variety of dynamical models known from natural applications and it is established that so-called quasiattractors of these systems may exhibit rather non-trivial features which are in a sharp distinction with that one could expect in analogy with hyperbolic or Lorenz-like attractors. For instance, the impossibility of giving a finite-parameter complete description of dynamics and bifurcations of the quasiattractors is shown. Besides, it is shown that the quasiattractors may simultaneously contain saddle periodic orbits with different numbers of positive Lyapunov exponents. If the dimension of a phase space is not too low (greater than four for flows and greater than three for maps), it is shown that such a quasiattractor may contain infinitely many coexisting strange attractors. (c) 1996 American Institute of Physics.
- Published
- 1996
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.