1. Dose-dependent effects of silver nanoparticles on cell death modes in mouse blastocysts induced via endoplasmic reticulum stress and mitochondrial apoptosis.
- Author
-
Lee CK, Wang FT, Huang CH, and Chan WH
- Abstract
In view of the rapidly expanding medical and commercial applications of silver nanoparticles (AgNPs), their potential health risks and environmental effects are a significant growing concern. Earlier research by our group uncovered the embryotoxic potential of AgNPs, showing detrimental impacts of these nanoparticles on both pre- and post-implantation embryonic development. In the current study, we showed that low (50-100 μM) and high (200-400 μM) dose ranges of AgNPs trigger distinct cell death programs affecting mouse embryo development and further explored the underlying mechanisms. Treatment with low concentrations of AgNPs (50-100 μM) triggered ROS generation, in turn, inducing mitochondria-dependent apoptosis, and ultimately, harmful effects on embryo implantation, post-implantation development, and fetal development. Notably, high concentrations of AgNPs (200-400 μM) evoked more high-level ROS generation and endoplasmic reticulum (ER) stress-mediated necrosis. Interestingly, pre-incubation with Trolox, a strong antioxidant, reduced ROS generation in the group treated with 200-400 μM AgNPs to the level induced by 50-100 μM AgNPs, resulting in switching of the cell death mode from necrosis to apoptosis and a significant improvement in the impairment of embryonic development. Our findings additionally indicate that activation of PAK2 is a crucial step in AgNP-triggered apoptosis and sequent detrimental effects on embryonic development. Based on the collective results, we propose that the levels of ROS generated by AgNP treatment of embryos serve as a critical regulator of cell death type, leading to differential degrees of damage to embryo implantation, post-implantation development and fetal development through triggering apoptosis, necrosis or other cell death signaling cascades., (© The Author(s) 2024. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF