1. Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA SoC Devices.
- Author
-
Korcyl G, Bialas P, Curceanu C, Czerwinski E, Dulski K, Flak B, Gajos A, Glowacz B, Gorgol M, Hiesmayr BC, Jasinska B, Kacprzak K, Kajetanowicz M, Kisielewska D, Kowalski P, Kozik T, Krawczyk N, Krzemien W, Kubicz E, Mohammed M, Niedzwiecki S, Pawlik-Niedzwiecka M, Palka M, Raczynski L, Rajda P, Rudy Z, Salabura P, Sharma NG, Sharma S, Shopa RY, Skurzok M, Silarski M, Strzempek P, Wieczorek A, Wislicki W, Zaleski R, Zgardzinska B, Zielinski M, and Moskal P
- Subjects
- Algorithms, Equipment Design, Image Interpretation, Computer-Assisted methods, Positron-Emission Tomography methods, Image Interpretation, Computer-Assisted instrumentation, Positron-Emission Tomography instrumentation
- Abstract
A novel approach to tomographic data processing has been developed and evaluated using the Jagiellonian positron emission tomography scanner as an example. We propose a system in which there is no need for powerful, local to the scanner processing facility, capable to reconstruct images on the fly. Instead, we introduce a field programmable gate array system-on-chip platform connected directly to data streams coming from the scanner, which can perform event building, filtering, coincidence search, and region-of-response reconstruction by the programmable logic and visualization by the integrated processors. The platform significantly reduces data volume converting raw data to a list-mode representation, while generating visualization on the fly.
- Published
- 2018
- Full Text
- View/download PDF