1. Experimental Limits on Solar Reflected Dark Matter with a New Approach on Accelerated-Dark-Matter-Electron Analysis in Semiconductors.
- Author
-
Zhang ZY, Yang LT, Yue Q, Kang KJ, Li YJ, An HP, C G, Chang JP, Chen YH, Cheng JP, Dai WH, Deng Z, Fang CH, Geng XP, Gong H, Guo QJ, Guo T, Guo XY, He L, He SM, Hu JW, Huang HX, Huang TC, Jiang L, Karmakar S, Li HB, Li HY, Li JM, Li J, Li QY, Li RMJ, Li XQ, Li YL, Liang YF, Liao B, Lin FK, Lin ST, Liu JX, Liu SK, Liu YD, Liu Y, Liu YY, Ma H, Mao YC, Nie QY, Ning JH, Pan H, Qi NC, Ren J, Ruan XC, Singh MK, Sun TX, Tang CJ, Tian Y, Wang GF, Wang JZ, Wang L, Wang Q, Wang YF, Wang YX, Wong HT, Wu SY, Wu YC, Xing HY, Xu R, Xu Y, Xue T, Yan YL, Yi N, Yu CX, Yu HJ, Yue JF, Zeng M, Zeng Z, Zhang BT, Zhang FS, Zhang L, Zhang ZH, Zhao JZ, Zhao KK, Zhao MG, Zhou JF, Zhou ZY, and Zhu JJ
- Abstract
Recently a dark matter-electron (DM-electron) paradigm has drawn much attention. Models beyond the standard halo model describing DM accelerated by high energy celestial bodies are under intense examination as well. In this Letter, a velocity components analysis (VCA) method dedicated to swift analysis of accelerated DM-electron interactions via semiconductor detectors is proposed and the first HPGe detector-based accelerated DM-electron analysis is realized. Utilizing the method, the first germanium based constraint on sub-GeV solar reflected DM-electron interaction is presented with the 205.4 kg·day dataset from the CDEX-10 experiment. In the heavy mediator scenario, our result excels in the mass range of 5-15 keV/c^{2}, achieving a 3 orders of magnitude improvement comparing with previous semiconductor experiments. In the light mediator scenario, the strongest laboratory constraint for DM lighter than 0.1 MeV/c^{2} is presented. The result proves the feasibility and demonstrates the vast potential of the VCA technique in future accelerated DM-electron analyses with semiconductor detectors.
- Published
- 2024
- Full Text
- View/download PDF