1. Research note: A method for recognizing and evaluating typical behaviors of laying hens in a thermal environment.
- Author
-
Yan Y, Sheng Z, Gu Y, Heng Y, Zhou H, and Wang S
- Subjects
- Animals, Female, Animal Husbandry methods, Housing, Animal, Deep Learning, Algorithms, Heat-Shock Response physiology, Hot Temperature, Chickens physiology, Behavior, Animal physiology
- Abstract
Automatically identifying abnormal behaviors of caged laying hens in a thermal environment improves manual management efficiency. It also provides reference indicators for breeding heat-tolerant hens. In this study, we propose a deep learning-based method for automatic recognition and evaluation of typical heat stress behaviors in hens. We developed a lightweight object detection algorithm, YOLO-HGP, based on the YOLOv8n as the baseline model. YOLO-HGP achieves Precision (P), Recall (R), and mean average precision (mAP) of 95.952%, 94.127%, and 97.667%, respectively, effectively detecting typical heat stress behaviors in hens. Compared to the original YOLO v8n, YOLO-HGP improves R, and mAP by 6.257%, and 1.963%, respectively. The FLOPs (floating point operations) and parameter count of YOLO-HGP are 4.3G and 1.729M, reducing by 47.56% and 42.58% compared to the original model. Additionally, we introduce the "ORC-ratio" (The ratio of the combined frequency of open-beak breathing and retching behaviors to the frequency of closed-beak behaviors.) as an evaluation indicator for the frequency of typical heat stress behaviors in hens and combine it with the Hybrid-SORT multiobject tracking algorithm to achieve tracking detection of individual hens. The study demonstrates that the proposed model effectively identifies and quantitatively evaluates typical behaviors of hens in a thermal environment, providing an effective approach for the automated recognition of heat stress behaviors in hens., Competing Interests: DISCLOSURES None of the authors have any conflicts of interest to declare., (Copyright © 2024. Published by Elsevier Inc.)
- Published
- 2024
- Full Text
- View/download PDF