1. Carbon dots encapsulated zeolitic imidazolate framework-8 as an enhanced multi-antioxidant for efficient cytoprotection to HK-2 cells.
- Author
-
Zhou S, Cai H, Tang Z, and Lu S
- Subjects
- Humans, Cell Line, Cytoprotection drug effects, Oxidative Stress drug effects, Cell Survival drug effects, Metal-Organic Frameworks chemistry, Metal-Organic Frameworks pharmacology, Surface Properties, Particle Size, Zeolites chemistry, Zeolites pharmacology, Imidazoles chemistry, Imidazoles pharmacology, NF-E2-Related Factor 2 metabolism, Antioxidants pharmacology, Antioxidants chemistry, Carbon chemistry, Carbon pharmacology, Reactive Oxygen Species metabolism, Quantum Dots chemistry
- Abstract
Excessive reactive oxygen species (ROS) can lead to the imbalance of antioxidant system in the body and cause oxidative damage to cells. It is imperative to rationally design nanomaterials with high catalytic activity and multiple antioxidant activities. Here, line peppers-derived carbon dots (CDs) is encapsulated into zeolitic imidazolate framework-8 (CDs@ZIF-8) to achieve enhanced antioxidant activities for improved protective effect on cells. This nanosystem has a broad spectrum of antioxidant properties, which can effectively remove a variety of intracellular ROS and protect cells from ROS-induced death and cytoskeleton damage. In addition, CDs@ZIF-8 can reduce malondialdehyde (MDA) level and increase the enzyme activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), as well as the level of glutathione (GSH) in human kidney proximal tubular epithelial cells (HK-2) cells. Mechanism studies demonstrated that CDs@ZIF-8 can up-regulate the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), allowing the regulation of antioxidant enzymes to further achieve antioxidant effect. Besides, CDs@ZIF-8 inhibited the secretion of proinflammatory cytokines. This work demonstrates that the constructed CDs@ZIF-8 with multi-antioxidant activity can act as a highly efficient intracellular ROS scavenger and provide potential for the application in related oxidative stress-induced diseases., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF