1. Systematic in vitro evolution in Plasmodium falciparum reveals key determinants of drug resistance.
- Author
-
Luth MR, Godinez-Macias KP, Chen D, Okombo J, Thathy V, Cheng X, Daggupati S, Davies H, Dhingra SK, Economy JM, Edgar RCS, Gomez-Lorenzo MG, Istvan ES, Jado JC, LaMonte GM, Melillo B, Mok S, Narwal SK, Ndiaye T, Ottilie S, Palomo Diaz S, Park H, Peña S, Rocamora F, Sakata-Kato T, Small-Saunders JL, Summers RL, Tumwebaze PK, Vanaerschot M, Xia G, Yeo T, You A, Gamo FJ, Goldberg DE, Lee MCS, McNamara CW, Ndiaye D, Rosenthal PJ, Schreiber SL, Serra G, De Siqueira-Neto JL, Skinner-Adams TS, Uhlemann AC, Kato N, Lukens AK, Wirth DF, Fidock DA, and Winzeler EA
- Subjects
- Humans, Frameshift Mutation, Genes, Protozoan, Genome, Protozoan, Malaria, Falciparum drug therapy, Malaria, Falciparum parasitology, Mutation, Missense, Protein Domains genetics, Antimalarials pharmacology, Antimalarials therapeutic use, Drug Resistance genetics, Drug Resistance, Multiple genetics, Plasmodium falciparum genetics, Plasmodium falciparum drug effects, Protozoan Proteins genetics, Protozoan Proteins metabolism, Protozoan Proteins chemistry, Directed Molecular Evolution
- Abstract
Surveillance of drug resistance and the discovery of novel targets-key objectives in the fight against malaria-rely on identifying resistance-conferring mutations in Plasmodium parasites. Current approaches, while successful, require laborious experimentation or large sample sizes. To elucidate shared determinants of antimalarial resistance that can empower in silico inference, we examined the genomes of 724 Plasmodium falciparum clones, each selected in vitro for resistance to one of 118 compounds. We identified 1448 variants in 128 recurrently mutated genes, including drivers of antimalarial multidrug resistance. In contrast to naturally occurring variants, those selected in vitro are more likely to be missense or frameshift, involve bulky substitutions, and occur in conserved, ordered protein domains. Collectively, our dataset reveals mutation features that predict drug resistance in eukaryotic pathogens.
- Published
- 2024
- Full Text
- View/download PDF