247 results on '"liang, Zhao"'
Search Results
2. Zn/Cr-MOFs/TiO 2 Composites as Adsorbents for Levofloxacin Hydrochloride Removal.
- Author
-
Wei F, Zhang Q, Ren Q, Chen H, Zhang Y, and Liang Z
- Abstract
The Zn/Cr-MOFs/TiO
2 composites were synthesized using the solvothermal method. XRD, FTIR, and SEM techniques were utilized to characterize the Zn/Cr-MOFs/TiO2 composites employed for simulating levofloxacin hydrochloride in wastewater. The impact of the mass of the Zn/Cr-MOFs/TiO2 composite, concentration of levofloxacin hydrochloride, solution pH, and temperature on the adsorption performance was investigated. Experimental findings indicated that at pH 6, the maximum removal efficiency of levofloxacin hydrochloride by the Zn/Cr-MOFs/TiO2 composite was achieved at 88.8%, with an adsorption capacity of 246.3 mg/g. To analyze the experimental data, both pseudo-first-order and pseudo-second-order kinetics models were applied, revealing that the pseudo-second-order model provided a better fit to the data. Additionally, Langmuir and Freundlich isotherm models were used to study equilibrium adsorption behavior and showed good agreement with both kinetic modeling and Langmuir isotherm analysis results. These observations suggest that monolayer adsorption predominates during the removal process of levofloxacin hydrochloride by Zn/Cr-MOFs/TiO2 composites.- Published
- 2024
- Full Text
- View/download PDF
3. Removal of Moxifloxacin from Aqueous Solutions Using GO/Cr-MOFs.
- Author
-
Wei F, Yu X, Ren Q, Chen H, Zhang Y, and Liang Z
- Abstract
The composite material, consisting of graphene oxide (GO) and chromium metal-organic frameworks (Cr-MOFs), was successfully synthesized by using a solvothermal method. The organic ligand employed was 2,5-dihydroxyterephthalic acid, while chromium acetate served as the source of the metal. The resulting material underwent characterization through Fourier transform infrared, scanning electron microscopy, and X-ray diffraction techniques. Subsequently, the adsorption capacity of the composite material toward moxifloxacin was evaluated. The results indicated a gradual increase in the moxifloxacin removal rate from GO/Cr-MOFs over time until reaching an equilibrium with a maximum removal rate of 90.4%. Additionally, it was observed that higher temperatures led to a decrease in the adsorption capacity. By incorporating 30 mg of GO/Cr-MOFs into a solution containing 40 ppm of moxifloxacin, the adsorption capacity could be maximized at 222.25 mg/g. Experimental data on MOF adsorption of moxifloxacin were analyzed using pseudo-first-order kinetics (PFO), pseudo-second-order kinetics (PSO), and Langmuir, Freundlich, and Temkin isotherm models for theoretical research purposes. Results showed that the PSO model exhibited a better correlation than the PFO model did. Furthermore, experimental data demonstrated good agreement with the Freundlich isothermal model, suggesting its effectiveness in accurately describing the adsorption process. Henceforth, it can be concluded that chemisorption plays a significant role in removing moxifloxacin by GO/Cr-MOFs. The van't Hoff equation analysis revealed an exothermic and spontaneous nature of moxifloxacin adsorption onto GO/Cr-MOFs. Compared to other materials, the GO/Cr-MOF composite exhibited high potential for applications such as drug removal or related fields.
- Published
- 2024
- Full Text
- View/download PDF
4. A review of advanced helical fibers: formation mechanism, preparation, properties, and applications.
- Author
-
Ding M, Yang X, Liu Y, Zeng S, Duan G, Huang Y, Liang Z, Zhang P, Ji J, and Jiang S
- Abstract
As a unique structural form, helical structures have a wide range of application prospects. In the field of biology, helical structures are essential for the function of biological macromolecules such as proteins, so the study of helical structures can help to deeply understand life phenomena and develop new biotechnology. In materials science, helical structures can give rise to special physical and chemical properties, such as in the case of spiral nanotubes, helical fibers, etc. , which are expected to be used in energy, environment, medical and other fields. The helical structure also has unique charm and application value in the fields of aesthetics and architecture. In addition, helical fibers have attracted a lot of attention because of their tendrils' vascular geometry and indispensable structural properties. In this paper, the development of helical fibers is briefly reviewed from the aspects of mechanism, synthesis process and application. Due to their good chemical and physical properties, helical fibers have a good application prospect in many fields. Potential problems and future opportunities for helical fibers are also presented for future studies.
- Published
- 2024
- Full Text
- View/download PDF
5. Inhibition of Tumoral VISTA to Overcome TKI Resistance via Downregulation of the AKT/mTOR and JAK2/STAT5 Pathways in Chronic Myeloid Leukemia.
- Author
-
Ai K, Chen M, Liang Z, Ding X, Gao Y, Zhang H, Wu S, He Y, and Li Y
- Abstract
Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment landscape for chronic myeloid leukemia (CML). However, TKI resistance poses a significant challenge, leading to treatment failure and disease progression. Resistance mechanisms include both BCR::ABL1-dependent and BCR::ABL1-independent pathways. The mechanisms underlying BCR::ABL1 independence remain incompletely understood, with CML cells potentially activating alternative signaling pathways, including the AKT/mTOR and JAK2/STAT5 pathways, to compensate for the loss of BCR::ABL1 kinase activity. This study explored tumoral VISTA (encoded by VSIR) as a contributing factor to TKI resistance in CML patients and identified elevated tumoral VISTA levels as a marker of resistance and poor survival. Through in vitro and in vivo analyses, we demonstrated that VSIR knockdown and the application of NSC-622608, a novel VISTA inhibitor, significantly impeded CML cell proliferation and induced apoptosis by attenuating the AKT/ mTOR and JAK2/STAT5 pathways, which are crucial for CML cell survival independent of BCR::ABL1 kinase activity. Moreover, VSIR overexpression promoted TKI resistance in CML cells. Importantly, the synergistic effect of NSC-622608 with TKIs offers a potent therapeutic avenue against both imatinib-sensitive and imatinib-resistant CML cells, including those harboring the challenging T315I mutation. Our findings highlight the role of tumoral VISTA in mediating TKI resistance in CML, suggesting that inhibition of VISTA, particularly in combination with TKIs, is an innovative approach to enhancing treatment outcomes in CML patients, irrespective of BCR::ABL1 mutation status. This study not only identified a new pathway contributing to TKI resistance but also revealed the possibility of targeting tumoral VISTA as a means of overcoming this significant clinical challenge.
- Published
- 2024
- Full Text
- View/download PDF
6. Evaluation of nematicides for Meloidogyne enterolobii management in sweetpotato.
- Author
-
Chen J, Ma J, Gao F, Tang W, Yang D, Zhang C, Liang Z, Xie Y, and Sun H
- Abstract
Sweetpotato is an important crop whose roots are consumed by people worldwide. Meloidogyne enterolobii stands out as a highly deleterious variant among the species of root-knot nematode that causes significant damage in sweetpotato. In the present study, the activity of four nematicides against M. enterolobii was assessed both in vitro and in growth cabinet experiments. After 48 hours of exposure, fluopyram and cyclobutrifluram had a greater negative effect on the motility of M. enterolobii second-stage juveniles (J2s) compared to fluensulfone and hymexazol, with respective median effective concentration (EC
50 ) values of 0.204, 0.423, 22.335 and 216.622 mg L-1 . When M. enterolobii eggs were incubated for 72 hours at the highest concentration of each nematicides, the inhibitory hatching effect of cyclobutrifluram (2.5 mg L-1 ), fluopyram (1.25 mg L-1 ) and fluensulfone (80 mg L-1 ) surpassed 85%, whereas hymexazol (640 mg L-1 ) was only 67%. Similar results were observed in growth cabinet experiments as well. The disease index (DI) and gall index (GI) were significantly decreased by all four nematicides compared to the control. However, the application of hymexazol did not yield a statistically significant difference in the egg masses index compared to the control, a finding which may be attributed to its potentially limited penetrability through the eggshell barrier. Overall, this study has demonstrated that all four nematicides effectively suppress M. enterolobii in sweetpotato, and this is the first report on the nematicidal activity of cyclobutrifluram and hymexazol against M. enterolobii ., (© 2024 Jingwei Chen et al., published by Sciendo.)- Published
- 2024
- Full Text
- View/download PDF
7. Co/Cd-MOF-Derived Porous Carbon Materials for Moxifloxacin Adsorption from Aqueous Solutions.
- Author
-
Wei F, Gong X, Ren Q, Chen H, Zhang Y, and Liang Z
- Abstract
In this study, Co/Cd-MOFs were synthesized via a solvothermal method. The resulting material was subjected to calcination at 900 °C for 2 h and characterized using FT-IR, XRD, and SEM techniques to assess its efficacy in moxifloxacin removal. The experimental findings revealed that the maximum adsorption capacity of Co/Cd-MOFs for moxifloxacin was observed at 350.4 mg/g within a 5 h timeframe. Furthermore, the analysis based on the pseudo-second-order kinetic model demonstrated that the adsorption process adhered to this specific model. Additionally, the adsorption isotherm analysis indicated that Freundlich multilayer adsorption provided the best description of the interaction between moxifloxacin and the Co/Cd-MOF material. These experimental and theoretical results collectively suggest that employing Co/Cd-MOFs as adsorbents holds promise for wastewater treatment applications.
- Published
- 2024
- Full Text
- View/download PDF
8. An Enzymatic Oxidation Cascade Converts δ-Thiolactone Anthracene to Anthraquinone in the Biosynthesis of Anthraquinone-Fused Enediynes.
- Author
-
Ma GL, Liu WQ, Huang H, Yan XF, Shen W, Visitsatthawong S, Prakinee K, Tran H, Fan X, Gao YG, Chaiyen P, Li J, and Liang ZX
- Abstract
Anthraquinone-fused enediynes are anticancer natural products featuring a DNA-intercalating anthraquinone moiety. Despite recent insights into anthraquinone-fused enediyne (AQE) biosynthesis, the enzymatic steps involved in anthraquinone biogenesis remain to be elucidated. Through a combination of in vitro and in vivo studies, we demonstrated that a two-enzyme system, composed of a flavin adenine dinucleotide (FAD)-dependent monooxygenase (DynE13) and a cofactor-free enzyme (DynA1), catalyzes the final steps of anthraquinone formation by converting δ-thiolactone anthracene to hydroxyanthraquinone. We showed that the three oxygen atoms in the hydroxyanthraquinone originate from molecular oxygen (O
2 ), with the sulfur atom eliminated as H2 S. We further identified the key catalytic residues of DynE13 and A1 by structural and site-directed mutagenesis studies. Our data support a catalytic mechanism wherein DynE13 installs two oxygen atoms with concurrent desulfurization and decarboxylation, whereas DynA1 acts as a cofactor-free monooxygenase, installing the final oxygen atom in the hydroxyanthraquinone. These findings establish the indispensable roles of DynE13 and DynA1 in AQE biosynthesis and unveil novel enzymatic strategies for anthraquinone formation., Competing Interests: The authors declare no competing financial interest., (© 2024 The Authors. Published by American Chemical Society.)- Published
- 2024
- Full Text
- View/download PDF
9. Preparation of Zn/Zr-MOFs by microwave-assisted ball milling and adsorption of lomefloxacin hydrochloride and levofloxacin hydrochloride in wastewater.
- Author
-
Wei F, Gong J, Ren Q, Yu X, Wang Y, Chen H, and Liang Z
- Subjects
- Adsorption, Zirconium chemistry, Anti-Bacterial Agents chemistry, Kinetics, Metal-Organic Frameworks chemistry, Levofloxacin chemistry, Microwaves, Fluoroquinolones chemistry, Water Pollutants, Chemical chemistry, Water Pollutants, Chemical analysis, Zinc chemistry, Wastewater chemistry
- Abstract
The Zn/Zr-MOFs were synthesized via microwave-assisted ball milling and subsequently characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The thermal stability of the Zn/Zr-MOFs was evaluated through thermogravimetry (TGA). The results demonstrated the exceptional adsorption properties of the Zn/Zr-MOFs towards Lomefloxacin hydrochloride and Levofloxacin hydrochloride. At a concentration of 30 ppm for Lomefloxacin hydrochloride, the addition of 30 mg of Zn/Zr-MOFs material resulted in an adsorption capacity of 179.2 mg•g-1. Similarly, at a concentration of 40 ppm for Levofloxacin hydrochloride, the addition of 30 mg Zn/Zr-MOFs material led to an adsorption capacity of 187.1 mg•g-1. Kinetic analysis revealed that the experimental data aligned well with a pseudo-second order kinetic model. Overall, these findings highlight the significant potential application of Zn/Zr-MOF materials in wastewater treatment., Competing Interests: Declaration of competing interest There is no potential conflict of interest., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
10. A cyclic di-GMP-binding adaptor protein interacts with a N5-glutamine methyltransferase to regulate the pathogenesis in Xanthomonas citri subsp. citri.
- Author
-
Shi Y, Cheng T, Cheang QW, Zhao X, Xu Z, Liang ZX, Xu L, and Wang J
- Subjects
- Virulence, Plant Diseases microbiology, Protein Binding, Xanthomonas pathogenicity, Xanthomonas metabolism, Xanthomonas genetics, Cyclic GMP metabolism, Cyclic GMP analogs & derivatives, Bacterial Proteins metabolism, Bacterial Proteins genetics, Methyltransferases metabolism, Methyltransferases genetics
- Abstract
The second messenger cyclic diguanylate monophosphate (c-di-GMP) regulates a wide range of bacterial behaviours through diverse mechanisms and binding receptors. Single-domain PilZ proteins, the most widespread and abundant known c-di-GMP receptors in bacteria, act as trans-acting adaptor proteins that enable c-di-GMP to control signalling pathways with high specificity. This study identifies a single-domain PilZ protein, XAC3402 (renamed N5MapZ), from the phytopathogen Xanthomonas citri subsp. citri (Xcc), which modulates Xcc virulence by directly interacting with the methyltransferase HemK. Through yeast two-hybrid, co-immunoprecipitation and immunofluorescent staining, we demonstrated that N5MapZ and HemK interact directly under both in vitro and in vivo conditions, with the strength of the protein-protein interaction decreasing at high c-di-GMP concentrations. This finding distinguishes N5MapZ from other characterized single-domain PilZ proteins, as it was previously known that c-di-GMP enhances the interaction between those single-domain PilZs and their protein partners. This observation is further supported by the fact that the c-di-GMP binding-defective mutant N5MapZ
R10A can interact with HemK to inhibit the methylation of the class 1 translation termination release factor PrfA. Additionally, we found that HemK plays an important role in Xcc pathogenesis, as the deletion of hemK leads to extensive phenotypic changes, including reduced virulence in citrus plants, decreased motility, production of extracellular enzymes and stress tolerance. Gene expression analysis has revealed that c-di-GMP and the HemK-mediated pathway regulate the expression of multiple virulence effector proteins, uncovering a novel regulatory mechanism through which c-di-GMP regulates Xcc virulence by mediating PrfA methylation via the single-domain PilZ adaptor protein N5MapZ., (© 2024 The Author(s). Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.)- Published
- 2024
- Full Text
- View/download PDF
11. A pan-KRAS degrader for the treatment of KRAS-mutant cancers.
- Author
-
Yang J, Wang QL, Wang GN, Ye JC, Li ZQ, Wang JY, Liang ZH, Li SX, Sun C, Liao WT, Gao YJ, Wang J, Mao Y, Yu C, Feng GK, and Zeng MS
- Abstract
KRAS mutations are highly prevalent in a wide range of lethal cancers, and these mutant forms of KRAS play a crucial role in driving cancer progression and conferring resistance to treatment. While there have been advancements in the development of small molecules to target specific KRAS mutants, the presence of undruggable mutants and the emergence of secondary mutations continue to pose challenges in the clinical treatment of KRAS-mutant cancers. In this study, we developed a novel molecular tool called tumor-targeting KRAS degrader (TKD) that effectively targets a wide range of KRAS mutants. TKD is composed of a KRAS-binding nanobody, a cell-penetrating peptide selectively targeting cancer cells, and a lysosome-binding motif. Our data revealed that TKD selectively binds to KRAS in cancer cells and effectively induces KRAS degradation via a lysosome-dependent process. Functionally, TKD suppresses tumor growth with no obvious side effects and enhances the antitumor effects of PD-1 antibody and cetuximab. This study not only provides a strategy for developing drugs targeting "undruggable" proteins but also reveals that TKD is a promising therapeutic for treating KRAS-mutant cancers., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
12. Regulation of Alternative Splicing of Lipid Metabolism Genes in Sepsis-Induced Liver Damage by RNA-Binding Proteins.
- Author
-
Abuduaini B, Jiyuan Z, Rehati A, Liang Z, and Yunlin S
- Abstract
RNA binding proteins (RBPs) have the potential for transcriptional regulation in sepsis-induced liver injury, but precise functions remain unclear. Our aim is to conduct a genome-wide expression analysis of RBPs and illuminate changes in the regulation of alternative splicing in sepsis-induced liver injury. RNA-seq data on "sepsis and liver" from the publicly available NCBI data set was analyzed, and differentially expressed RBPs and alternative splicing events (ASEs) in the healthy and septic liver were identified. Co-expression analyses of sepsis-regulated RBPs and ASEs were performed. Models of sepsis were established to validate hepatic RBP gene expression patterns with different treatments. Pairwise analysis of gene expression profiles of sham, cecum ligation puncture (CLP), and CLP with dichloroacetate (CLPDCA) mice allowed 1208 differentially expressed genes (DEGs), of which 800 were up-regulated and 408 down-regulated, to be identified. DEGs were similar in both Sham and CLPDCA mice. The KEGG analysis showed that up-regulated genes as being involved in cytokine-cytokine receptor interaction and IL-17 signaling pathway and down-regulated genes in metabolic pathways. Differences in lipid metabolism-related alternative splicing events, including A3SS, were also found in CLP and CLPDCA compared with sham mice. Thirty-seven RBPs, including S100a11, Ads2, Fndc3b, Fn1, Ddx28, Car2, Cisd1, and Ptms, were differentially expressed in CLP mice and the regulated alternative splicing genes(RASG) with the RBP shown to be enriched in lipid metabolic and oxidation-reduction-related processes by GO functional analysis. In KEEG analysis the RASG mainly enriched in metabolic pathway. The models of sepsis were constructed with different treatment groups, and S100a11 expression in the CLP group found to be higher than in the sham group, a change that was reversed by DCA. The alternative splicing ratio of Srebf1 and Cers2 decreased compared with the sham group increased after DCA treatment. Abnormal profiles of gene expression and alternative splicing were associated with sepsis-induced liver injury. Unusual expression of RBPs, such as S100a11, may regulate alternative splicing of lipid metabolism-associated genes, such as Srebf1 and Cers2, in the septic liver. RBPs may constitute potential treatment targets for sepsis-induced liver injury., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
13. GELT: A graph embeddings based lite-transformer for knowledge tracing.
- Author
-
Liang Z, Wu R, Liang Z, Yang J, Wang L, and Su J
- Subjects
- Humans, Deep Learning, Algorithms, Knowledge, Neural Networks, Computer
- Abstract
The development of intelligent education has led to the emergence of knowledge tracing as a fundamental task in the learning process. Traditionally, the knowledge state of each student has been determined by assessing their performance in previous learning activities. In recent years, Deep Learning approaches have shown promising results in capturing complex representations of human learning activities. However, the interpretability of these models is often compromised due to the end-to-end training strategy they employ. To address this challenge, we draw inspiration from advancements in graph neural networks and propose a novel model called GELT (Graph Embeddings based Lite-Transformer). The purpose of this model is to uncover and understand the relationships between skills and questions. Additionally, we introduce an energy-saving attention mechanism for predicting knowledge states that is both simple and effective. This approach maintains high prediction accuracy while significantly reducing computational costs compared to conventional attention mechanisms. Extensive experimental results demonstrate the superior performance of our proposed model compared to other state-of-the-art baselines on three publicly available real-world datasets for knowledge tracking., Competing Interests: NO authors have competing interests., (Copyright: © 2024 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
14. Targeting PARP14 with lomitapide suppresses drug resistance through the activation of DRP1-induced mitophagy in multiple myeloma.
- Author
-
Zhang H, Wang H, Hu Y, Gao Y, Chen J, Meng Y, Qiu Y, Hu R, Liao P, Li M, He Y, Liang Z, Xie X, and Li Y
- Subjects
- Humans, Mitophagy, Mitochondria metabolism, Neoplasm Recurrence, Local pathology, Drug Resistance, Ubiquitin-Protein Ligases genetics, Ubiquitin-Protein Ligases metabolism, Poly(ADP-ribose) Polymerases metabolism, Multiple Myeloma drug therapy, Multiple Myeloma genetics, Multiple Myeloma metabolism, Mitochondrial Diseases metabolism, Mitochondrial Diseases pathology, Benzimidazoles
- Abstract
Multiple myeloma (MM) is a hematological malignancy that remains incurable, primarily due to the high likelihood of relapse or development of resistance to current treatments. To explore and discover new medications capable of overcoming drug resistance in MM, we conducted cell viability inhibition screens of 1504 FDA-approved drugs. Lomitapide, a cholesterol-lowering agent, was found to exhibit effective inhibition on bortezomib-resistant MM cells in vitro and in vivo. Our data also indicated that lomitapide decreases the permeability of the mitochondrial outer membrane and induces mitochondrial dysfunction in MM cells. Next, lomitapide treatment upregulated DRP1 and PINK1 expression levels, coupled with the mitochondrial translocation of Parkin, leading to MM cell mitophagy. Excessive mitophagy caused mitochondrial damage and dysfunction induced by lomitapide. Meanwhile, PARP14 was identified as a direct target of lomitapide by SPR-HPLC-MS, and we showed that DRP1-induced mitophagy was crucial in the anti-MM activity mediated by PARP14. Furthermore, PARP14 is overexpressed in MM patients, implying that it is a novel therapeutic target in MM. Collectively, our results demonstrate that DRP1-mediated mitophagy induced by PARP14 may be the cause for mitochondrial dysfunction and damage in response to lomitapide treatment., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
15. Streptomyces sungeiensis SD3 as a Microbial Chassis for the Heterologous Production of Secondary Metabolites.
- Author
-
Lee SQE, Ma GL, Candra H, Khandelwal S, Pang LM, Low ZJ, Cheang QW, and Liang ZX
- Subjects
- Phylogeny, Anti-Bacterial Agents metabolism, Genomics, Secondary Metabolism genetics, Multigene Family, Streptomyces genetics, Streptomyces metabolism
- Abstract
We present the newly isolated Streptomyces sungeiensis SD3 strain as a promising microbial chassis for heterologous production of secondary metabolites. S. sungeiensis SD3 exhibits several advantageous traits as a microbial chassis, including genetic tractability, rapid growth, susceptibility to antibiotics, and metabolic capability supporting secondary metabolism. Genomic and transcriptomic sequencing unveiled the primary metabolic capabilities and secondary biosynthetic pathways of S. sungeiensis SD3, including a previously unknown pathway responsible for the biosynthesis of streptazone B1. The unique placement of S. sungeiensis SD3 in the phylogenetic tree designates it as a type strain, setting it apart from other frequently employed Streptomyces chassis. This distinction makes it the preferred chassis for expressing biosynthetic gene clusters (BGCs) derived from strains within the same phylogenetic or neighboring phylogenetic clade. The successful expression of secondary biosynthetic pathways from a closely related yet slow-growing strain underscores the utility of S. sungeiensis SD3 as a heterologous expression chassis. Validation of CRISPR/Cas9-assisted genetic tools for chromosomal deletion and insertion paved the way for further strain improvement and BGC refactoring through rational genome editing. The addition of S. sungeiensis SD3 to the heterologous chassis toolkit will facilitate the discovery and production of secondary metabolites.
- Published
- 2024
- Full Text
- View/download PDF
16. "Five birds one stone" tri-modal monitoring driven lab-on-magnetic aptasensor for accurate pathogen detection and enhanced germicidal application.
- Author
-
Ren Y, Cao L, Jiao R, Zhang X, Zhao HY, Liang Z, Li G, Ling N, and Ye Y
- Subjects
- Staphylococcus aureus chemistry, Hydrogen Peroxide, Bacteria, Magnetic Phenomena, Limit of Detection, Biosensing Techniques methods, Anti-Infective Agents, Aptamers, Nucleotide chemistry
- Abstract
The effective combination of ultra-precise detection and on-demand sterilization stands out as one of the most valuable antifouling methods to combat pathogenic bacteria source and ensure the environment and food safety. Herein, an innovative "five birds one stone" aptasensor has been reported. It integrates magnetic separation, tri-modal precision detection, and efficient sterilization for monitoring of Staphylococcus aureus. Firstly, as a switch of the aptasensor, aptamer-modified potassium chloride-doped carbon dots (apt/KCl@CDs) could be adsorbed onto the surface of magnetic multi-walled carbon nanotube composites (M-MWCNTs) through π-π stacking, which could be replaced by the specific binding of the target bacteria to the aptamer. The mutual interference between the nanomaterials could be eliminated by this reverse magnetosorption strategy, enhancing the test sensitivity. In addition to the fluorescence properties, the peroxidase activity possessed by apt/KCl@CDs enables the conversion of the (3,3',5,5'-tetramethylbenzidine) TMB-H
2 O2 colorimetric system to a photothermal modal. Then, the ultra-precision detection in the assay was achieved by the fluorescence-colorimetric-photothermal tri-modal sensing from the formation of S. aureus-apt/KCl@CDs in the supernatant. Besides, the efficient sterilization could be ensured by adsorbing the apt/KCl@CDs on the surface of S. aureus, generating toxic •OH for direct attacking cells. This was the first report that was more beneficial for bacterial eradication. The detection limits of fluorescence, colorimetric and photothermal modals were 4.81 cfu/mL, 3.40 cfu/mL and 6.74 cfu/mL, respectively. The magnetic nanoplatform integrating tri-modal detection-sterilization meets the demand for highly sensitive and precise detection in different scenarios, providing immediate control for pathogens and broad application prospects., Competing Interests: Declaration of competing interest The authors declare no competing financial interest., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
17. A PilZ domain protein interacts with the transcriptional regulator HinK to regulate type VI secretion system in Pseudomonas aeruginosa.
- Author
-
Cheng T, Cheang QW, Xu L, Sheng S, Li Z, Shi Y, Zhang H, Pang LM, Liu DX, Yang L, Liang ZX, and Wang J
- Subjects
- Cyclic GMP analogs & derivatives, Cyclic GMP metabolism, Electrophoretic Mobility Shift Assay, Immunoprecipitation, Mutation, Promoter Regions, Genetic, Protein Binding, Pyocyanine metabolism, Quorum Sensing, Second Messenger Systems, Two-Hybrid System Techniques, Bacterial Proteins chemistry, Bacterial Proteins genetics, Bacterial Proteins metabolism, Gene Expression Regulation, Bacterial, Pseudomonas aeruginosa genetics, Pseudomonas aeruginosa metabolism, Type VI Secretion Systems genetics, Type VI Secretion Systems metabolism, Transcription, Genetic
- Abstract
Type VI secretion systems (T6SS) are bacterial macromolecular complexes that secrete effectors into target cells or the extracellular environment, leading to the demise of adjacent cells and providing a survival advantage. Although studies have shown that the T6SS in Pseudomonas aeruginosa is regulated by the Quorum Sensing system and second messenger c-di-GMP, the underlying molecular mechanism remains largely unknown. In this study, we discovered that the c-di-GMP-binding adaptor protein PA0012 has a repressive effect on the expression of the T6SS HSI-I genes in P. aeruginosa PAO1. To probe the mechanism by which PA0012 (renamed TssZ, Type Six Secretion System -associated PilZ protein) regulates the expression of HSI-I genes, we conducted yeast two-hybrid screening and identified HinK, a LasR-type transcriptional regulator, as the binding partner of TssZ. The protein-protein interaction between HinK and TssZ was confirmed through co-immunoprecipitation assays. Further analysis suggested that the HinK-TssZ interaction was weakened at high c-di-GMP concentrations, contrary to the current paradigm wherein c-di-GMP enhances the interaction between PilZ proteins and their partners. Electrophoretic mobility shift assays revealed that the non-c-di-GMP-binding mutant TssZ
R5A/R9A interacts directly with HinK and prevents it from binding to the promoter of the quorum-sensing regulator pqsR. The functional connection between TssZ and HinK is further supported by observations that TssZ and HinK impact the swarming motility, pyocyanin production, and T6SS-mediated bacterial killing activity of P. aeruginosa in a PqsR-dependent manner. Together, these results unveil a novel regulatory mechanism wherein TssZ functions as an inhibitor that interacts with HinK to control gene expression., Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
18. Initial cyclic-di-GMP upregulation triggers sporadic cellular expansion leading to improved cellular survival.
- Author
-
Yang Y, Guo S, Hong CJ, Liang ZX, and Ho CL
- Subjects
- Up-Regulation, Biofilms, Gene Expression Regulation, Bacterial, Pseudomonas aeruginosa genetics, Pseudomonas aeruginosa metabolism, Bacterial Proteins genetics, Bacterial Proteins metabolism, Cyclic GMP analogs & derivatives
- Abstract
Bacterial second messenger c-di-GMP upregulation is associated with the transition from planktonic to sessile microbial lifestyle, inhibiting cellular motility, and virulence. However, in-depth elucidation of the cellular processes resulting from c-di-GMP upregulation has not been fully explored. Here, we report the role of upregulated cellular c-di-GMP in promoting planktonic cell growth of Escherichia coli K12 and Pseudomonas aeruginosa PAO1. We found a rapid expansion of cellular growth during initial cellular c-di-GMP upregulation, resulting in a larger planktonic bacterial population. The initial increase in c-di-GMP levels promotes bacterial swarming motility during the growth phase, which is subsequently inhibited by the continuous increase of c-di-GMP, and ultimately facilitates the formation of biofilms. We demonstrated that c-di-GMP upregulation triggers key bacterial genes linked to bacterial growth, swarming motility, and biofilm formation. These genes are mainly controlled by the master regulatory genes csgD and csrA. This study provides us a glimpse of the bacterial behavior of evading potential threats through adapting lifestyle changes via c-di-GMP regulation., (© 2024 Wiley-VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
19. [Comparison of the ability of four different kinds of nickel-titanium instruments to prepare simulated resin to simulate curved root canal forming].
- Author
-
Liang ZH and Zhang Y
- Subjects
- Nickel, Dental Instruments, Root Canal Preparation methods, Equipment Design, Dental Pulp Cavity, Titanium
- Abstract
Purpose: To compare the forming ability of four kinds of nickel-titanium instrument preparation resin for simulated curved root canal., Methods: A total of 40 single bend resin simulated root canals were randomly divided into 4 groups with 10 in each group. Four kinds of nickel-titanium instruments (ProTaper, HyFlex EDM, WaveOne Gold and Reciproc Blue) were used for root canal preparation, and divided into group A, group B, group C and group D. The preparation time of the four groups was compared, the root canal images before and after preparation were analyzed by computer image analysis software, and the changes of the preparation time, curvature and curvature radius of the four groups were recorded. With the root tip as the center of the circle, the radius of 1-10 mm was selected as concentric circle arcs. The detection points were overlapping root canal intersection points. The resin removal amount and center positioning force of the inner and outer walls of the root canal at different detection points were recorded. Statistical analysis was performed with SPSS 20.0 software package., Results: The root canal preparation time in group A was significant longer than that in group B, C and D(P<0.05), but there was no significant difference in the curvature and curvature radius of the root canal among the four groups (P>0.05). The removal amount of resin from the root canal wall in group C was significant lower than that in group A, B and D (P<0.05) when the distance from the detection point to the apical foramina was 5, 6, 8, 9 and 10 mm, respectively. The removal amount of resin from the outer wall of the root canal in group C was significant lower than that in group A, B and D (P<0.05) when the distance from the detection point to the apical foramina was 5, 6, 7, 9 and 10 mm, respectively. The root tip offset of group A from the detection point to the apical hole of 1, 2, 3, 4, 6, 7, 8, 9 and 10 mm was significant greater than that of group B, C and D(P<0.05)., Conclusions: Among the four instruments, ProTaper has the largest apical deviation, HyFlex EDM, WaveOne Gold and Reciproc Blue have better ability of root canal forming.
- Published
- 2024
20. Biosynthesis of Octacosamicin A: Uncommon Starter/extender Units and Product Releasing via Intermolecular Amidation.
- Author
-
Liao Y, Wang XJ, Ma GL, Candra H, Qiu En SL, Khandelwal S, and Liang ZX
- Subjects
- Polyenes, Polyketide Synthases genetics, Polyketide Synthases metabolism, Glycine
- Abstract
Octacosamicin A is an antifungal metabolite featuring a linear polyene-polyol chain flanked by N-hydroxyguanidine and glycine moieties. We report here that sub-inhibitory concentrations of streptomycin elicited the production of octacosamicin A in Amycolatopsis azurea DSM 43854
T . We identified the biosynthetic gene cluster (oca BGC) that encodes a modular polyketide synthase (PKS) system for assembling the polyene-polyol chain of octacosamicin A. Our analysis suggested that the N-hydroxyguanidine unit originates from a 4-guanidinobutyryl-CoA starter unit, while the PKS incorporates an α-hydroxyketone moiety using a (2R)-hydroxymalonyl-CoA extender unit. The modular PKS system contains a non-canonical terminal module that lacks thioesterase (TE) and acyl carrier protein (ACP) domains, indicating the biosynthesis is likely to employ an unconventional and cryptic off-loading mechanism that attaches glycine to the polyene-polyol chain via an intermolecular amidation reaction., (© 2023 Wiley-VCH GmbH.)- Published
- 2024
- Full Text
- View/download PDF
21. Effect of ferric ions on Cronobacter sakazakii growth, biofilm formation, and swarming motility.
- Author
-
Wang Y, Ling N, Wang Y, Ou D, Liang Z, Li G, Zhao H, and Ye Y
- Subjects
- Infant, Infant, Newborn, Humans, Biofilms, Hemin pharmacology, Iron pharmacology, Ions pharmacology, Cronobacter sakazakii, Cronobacter
- Abstract
Cronobacter sakazakii (C. sakazakii) is a common food-borne pathogen that induces meningitis, sepsis, and necrotizing enterocolitis, primarily in newborns and infants. Iron plays a pivotal role in the growth of cells and biofilm formation. However, the effects of hemin (ferric ion donor) on C. sakazakii cells are scarcely known. Here, we explored the effect of ferric ions on the growth of planktonic C. sakazakii, biofilm formation, and swarming motility by crystal violet staining (CVS), scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and swarming assay. Our study demonstrated that ferric ions facilitated the growth of planktonic C. sakazakii, while hemin at concentrations ranging from 50 to 800 μmol/L promoted biofilm formation and at concentrations between 50 and 200 μmol/L enhanced the swarming motility of C. sakazakii. Furthermore, high hemin concentrations (400-800 μmol/L) were found to reduce flagellar length, as confirmed by transmission electron microscopy (TEM). These findings indicated that ferric ions mediated the swarming motility of C. sakazakii by regulating flagellar assembly. Finally, transcriptomic analysis of C. sakazakii was performed at hemin concentrations of 0, 50, and 200 μmol/L, which revealed that several genes associated with iron transport and metabolism, and flagellar assembly were essential for the survival of C. sakazakii under hemin treatment. Our findings revealed the molecular basis of ferric ions on C. sakazakii growth and biofilm formation, thus providing a novel perspective for its prevention and control., Competing Interests: Declaration of competing interest All authors declare no potential conflict of interest., (Copyright © 2023. Published by Elsevier B.V.)
- Published
- 2024
- Full Text
- View/download PDF
22. Toward intelligent food packaging of biosensor and film substrate for monitoring foodborne microorganisms: A review of recent advancements.
- Author
-
Bao F, Liang Z, Deng J, Lin Q, Li W, Peng Q, and Fang Y
- Abstract
Microorganisms in food do harms to human. They can cause serious adverse reactions and sometimes even death. So it is an urgent matter to find an effective method to control them. The research of intelligent- biosensor packaging is in the ascendant in recent years, which is mainly promoted by reflecting on food safety and reducing resource waste. Intelligent biosensor-packaging is an instant and efficient intelligent packaging technology, which can directly and scientifically manifest the quality of food without complex operation. In this review, the purposes of providing relevant information on intelligent biosensor-packaging are reviewed, such as types of biosensors for monitoring foodborne microorganism, the suitable material for intelligent biosensor-packaging and design and fabrication of intelligent biosensor-packaging. The potential of intelligent biosensor-packaging in the detection of foodborne microorganisms is emphasized. The challenges and directions of the intelligent biosensor-packaging in the detection of foodborne pathogens are discussed. With the development of science and technology in the future, the intelligent biosensor-packaging should be commercialized in a real sense. And it is expected that commercial products can be manufactured in the future, which will provide a far-reaching approach in food safety and food prevention. HighlightsSeveral biosensors are suitable for the detection of food microorganisms.Plastic polymer is an excellent choice for the construction of intelligent biosensor packaging.Design and fabrication can lay the foundation for intelligent-biosensor packaging.Intelligent biosensor-packaging can realize fast and real-time detection of microorganisms in food.
- Published
- 2024
- Full Text
- View/download PDF
23. Influence of metabolic dysfunction-associated fatty liver disease on the prognosis of patients with HBV-related acute-on-chronic liver failure.
- Author
-
Lai RM, Yao LX, Lin S, Zhou JH, Liu BP, Liang ZY, Chen T, Jiang JJ, Zheng Q, and Zhu Y
- Subjects
- Humans, Hepatitis B virus, Prognosis, ROC Curve, Retrospective Studies, Acute-On-Chronic Liver Failure diagnosis, Acute-On-Chronic Liver Failure etiology, Non-alcoholic Fatty Liver Disease complications
- Abstract
Objectives: Metabolic-associated fatty liver disease (MAFLD) has clinical relevance in patients with acute-on-chronic liver failure (ACLF). We investigated the association between MAFLD and prognosis in patients with ACLF., Methods: We included patients with ACLF with available clinical data who visited our hospital for nearly 9 years. We compared the prognosis of patients in the different subgroups of ACLF and predicted the incidence of adverse outcomes. Moreover, a new model based on MAFLD was established., Results: Among 339 participants, 75 had MAFLD. The prognosis of patients with ACLF was significantly correlated with MAFLD. Patients with ACLF with concomitant MAFLD tended to have a lower cumulative survival rate ( p = 0.026) and a higher incidence of hepatorenal syndrome (9.33% versus 3.40%, p = 0.033) than those without MAFLD. We developed an TIM2 model and the area under the ROC curve of the new model for 30-day and 60-day mortality (0.759 and 0.748) was higher than other predictive methods., Conclusion: The presence of MAFLD in patients with HBV-related ACLF was associated with an increased risk of in-hospital mortality. Moreover, The TIM2 model is a high-performance prognostic score for HBV-related ACLF.
- Published
- 2024
- Full Text
- View/download PDF
24. Non-coding RNAs' function in cancer development, diagnosis and therapy.
- Author
-
Zhang X, Xu X, Song J, Xu Y, Qian H, Jin J, and Liang ZF
- Abstract
While previous research on cancer biology has focused on genes that code for proteins, in recent years it has been discovered that non-coding RNAs (ncRNAs)play key regulatory roles in cell biological functions. NcRNAs account for more than 95% of human transcripts and are an important entry point for the study of the mechanism of cancer development. An increasing number of studies have demonstrated that ncRNAs can act as tumor suppressor genes or oncogenes to regulate tumor development at the epigenetic level, transcriptional level, as well as post-transcriptional level. Because of the importance of ncRNAs in cancer, most clinical trials have focused on ncRNAs to explore whether ncRNAs can be used as new biomarkers or therapies. In this review, we focus on recent studies of ncRNAs including microRNAs (miRNAs), long ncRNAs (lncRNAs), circle RNAs (circRNAs), PIWI interacting RNAs (piRNAs), and tRNA in different types of cancer and explore the application of these ncRNAs in the development of cancer and the identification of relevant therapeutic targets and tumor biomarkers. Graphical abstract drawn by Fidraw., Competing Interests: Declaration of Competing Interest All authors of this study declare no conflict of interests., (Copyright © 2023 The Authors. Published by Elsevier Masson SAS.. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
25. The impact of GmTSA and GmALS on soybean salt tolerance: uncovering the molecular landscape of amino acid and secondary metabolism pathways.
- Author
-
Sun M, Wei S, Liu J, Wang L, Zhang Y, Hu L, Piao J, Liang Z, Jiang H, Xin D, Zhao Y, Chen Q, Foyer CH, Liu C, and Qi Z
- Subjects
- Secondary Metabolism, Salt Tolerance genetics, Salt Stress, Glycine max genetics, Amino Acids
- Abstract
Key Message: GmTSA and GmALS were screened out for salt stress in soybean and explore the poteintial amino acid secondary metabolism pathways. Soybean (Glycine max L.) is an oil and protein crop of global importance, and salinity has significant effects on soybean growth. Here, a population of soybean chromosome segment substitution lines was screened to identify highly salt-tolerant lines. In total, 24 quantitative trait loci (QTLs) on seven chromosomes were associated with salt tolerance, and CSSL_R71 was selected for further analysis. Although numerous genes were differentially expressed in CSSL_R71 in response to salt statically no differently, transcript levels of classical salt-response genes, including those of the salt overly sensitive pathway. Rather, salt tolerance in CSSL_R71 was associated with changes in amino acid and lipid metabolism. In particular, changes in p-coumaric acid, shikimic acid, and pyrrole-2-carboxylic acid levels accompanied salt tolerance in CSSL_R71. Eleven differentially expressed genes (DEGs) related to amino acid and secondary metabolism were identified as candidate genes on the substituted chromosome fragment. Six of these showed differences in coding sequence between the parental genotypes. Crucially, overexpression of GmTSA (Glyma.03G158400, tryptophan synthase) significantly enhanced salt tolerance in soybean hairy roots, whereas overexpression of GmALS (Glyma.13G241000, acetolactate synthase) decreased salt tolerance. Two KASP markers were developed for GmALS and used to genotype salt-tolerant and salt-sensitive lines in the CSSL population. Non-synonymous mutations were directly associated with salt tolerance. Taken together, these data provide evidence that changes in amino acid and secondary metabolism have the potential to confer salt tolerance in soybean., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
26. Donor-derived CAR-T therapy improves the survival of relapsed B-ALL after allogeneic transplantation compared with donor lymphocyte infusion.
- Author
-
Liang Z, Xu H, Zhou X, Yang J, Tu S, He Y, Zhou L, and Li Y
- Subjects
- Humans, Retrospective Studies, Transplantation, Homologous adverse effects, Immunotherapy, Adoptive adverse effects, Antigens, CD19, Lymphocytes, Receptors, Chimeric Antigen, Hematopoietic Stem Cell Transplantation adverse effects, Graft vs Host Disease etiology, Graft vs Host Disease therapy
- Abstract
Chimeric antigen receptor (CAR)-T cell therapy revolutionized treatment for various hematologic malignances. However, limited studies were reported to compare the efficacy and safety of CAR-T and donor lymphocyte infusion (DLI) for patients with relapsed B-cell acute lymphoblastic leukemia (B-ALL) after hematopoietic stem cell transplantation (HSCT) comprehensively. We conducted a single-center, retrospective comparative study that consisted of 12 patients who were treated with DLI (control group) and 12 patients treated with donor-derived CD19 CAR-T cells (experimental group, 6 patients also received CD22 or CD123 CAR-T cells sequentially) with 3 overlaps. The event-free survival (EFS) of patients in experimental group was superior to that of the control group: 516 days versus 98 days (p = 0.0415). Compared with 7 of 12 patients treated with DLI suffered grades III-IV acute graft versus host disease (aGVHD), one grade III aGVHD developed in patients treated with CAR-T therapy. No significant difference in the incidence of infection was identified between these two groups. Most patients in the experimental group had only mild cytokine release syndrome and none developed neurotoxicity. The univariate analysis of patients in the experiment group revealed that earlier CAR-T therapy for post-transplantation relapse was associated with better EFS. There was no significant difference in EFS between patients treated with dual-target CAR-T with those with single CD19 CAR-T. In this study, our data supported that donor-derived CAR-T therapy is a safe and potentially effective treatment for relapsed B-ALL after HSCT and may be superior to DLI., (© 2023. The Author(s) under exclusive licence to Japan Human Cell Society.)
- Published
- 2023
- Full Text
- View/download PDF
27. Exosomal hsa_circ_000200 as a potential biomarker and metastasis enhancer of gastric cancer via miR-4659a/b-3p/HBEGF axis.
- Author
-
Huang XJ, Wang Y, Wang HT, Liang ZF, Ji C, Li XX, Zhang LL, Ji RB, Xu WR, Jin JH, and Qian H
- Abstract
Background: Exosome, a component of liquid biopsy, loaded protein, DNA, RNA and lipid gradually emerges as biomarker in tumors. However, exosomal circRNAs as biomarker and function mechanism in gastric cancer (GC) are not well understood., Methods: Differentially expressed circRNAs in GC and healthy people were screened by database. The identification of hsa_circ_000200 was verified by RNase R and sequencing, and the expression of hsa_circ_000200 was evaluated using qRT-PCR. The biological function of hsa_circ_000200 in GC was verified in vitro. Western blot, RIP, RNA fluorescence in situ hybridization, and double luciferase assay were utilized to explore the potential mechanism of hsa_circ_000200., Results: Hsa_circ_000200 up-regulated in GC tissue, serum and serum exosomes. Hsa_circ_000200 in serum exosomes showed better diagnostic ability than that of tissues and serum. Combined with clinicopathological parameters, its level was related to invasion depth, TNM staging, and distal metastasis. Functionally, knockdown of hsa_circ_000200 inhibited GC cells proliferation, migration and invasion in vitro, while its overexpression played the opposite role. Importantly, exosomes with up-regulated hsa_circ_000200 promoted the proliferation and migration of co-cultured GC cells. Mechanistically, hsa_circ_000200 acted as a "ceRNA" for miR-4659a/b-3p to increase HBEGF and TGF-β/Smad expression, then promoted the development of GC., Conclusions: Our findings suggest that hsa_circ_000200 promotes the progression of GC through hsa_circ_000200/miR-4659a/b-3p/HBEGF axis and affecting the expression of TGF-β/Smad. Serum exosomal hsa_circ_000200 may serve as a potential biomarker for GC., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
28. Research into Preparation and Performance of Fast-Hardening RPC Mixed with Straw.
- Author
-
Gong K, Liang Z, Peng X, and Wang H
- Abstract
Based on its characteristics of early strength, good toughness, and excellent mechanical and impact resistance, steel fiber-reinforced fast-hardening reactive powder concrete (RPC) is expected to become an alternative material used in the rapid repair of marine concrete structures. However, the steel fibers have also caused corrosion problems in coastal environments. To make doped fiber fast-hardening RPC more adaptable for use in ocean engineering, this study prepares fast-hardening RPC mixed with straw and studied the effects of straw content and curing age on its slump flow, setting time, and mechanical performance (flexural strength, compressive strength, and flexural toughness). The effects of straw addition on the compactness and hydration products of fast-hardening RPC were studied through macro- (ultrasonic analysis) and micro-scopic analysis (electron microscopy scanning and X-ray diffraction patterns). The straw content mentioned in this paper refers to the percentage of straw in relation to RPC volume. The results showed that straw reduced the fluidity of RPC slurry by 10.5-11.5% compared to concrete without straw, and it accelerated the initial setting of RPC slurry. When the straw content accounted for 1% of RPC volume, the setting rate was the fastest, with a increasing rate being 6-18%. Compared to concrete without straw, the flexural and compressive strength of fast-hardening RPC was enhanced by 3.7-30.5%. When the content was either 3% or 4%, the mechanical properties improved. Moreover, when the straw content accounted for 4% of RPC volume, the flexural toughness was the highest, with the increase rate being 21.4% compared to concrete without straw. Straw reduces the compactness of fast-hardening RPC.
- Published
- 2023
- Full Text
- View/download PDF
29. Eschar Dermabrasion in Deep Dermal Partial-Thickness Burn: A Case Report.
- Author
-
Pang M, Zhao L, Liu S, and Lei Y
- Subjects
- Humans, Cicatrix etiology, Cicatrix surgery, Wound Healing, Dermabrasion, Quality of Life, Skin Transplantation, Skin Diseases, Burns surgery
- Abstract
Abstract: Although dermabrasion is widely used to treat various skin diseases and for scar repair, relatively few reports have described its use with burn wounds. As a blunt debridement, eschar dermabrasion has unique advantages. For patients with deep burns, the boundary between active tissue and inactive tissue is unclear. With eschar dermabrasion, necrotic tissue can be removed to the greatest extent with minimal damage. Early use can help patients skip the scab-dissolving period, decrease local and systemic inflammation, reduce postoperative scarring, and significantly reduce the difficulty of early wound care. As a result, the patient's hospitalization costs and pain during treatment are both reduced, and thanks to less scarring, the patient is more likely to engage in social activities and has an improved quality of life., (Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.)
- Published
- 2023
- Full Text
- View/download PDF
30. The effect of phytochemicals in N-methyl-N-nitro-N-nitroguanidine promoting the occurrence and development of gastric cancer.
- Author
-
Lu L, Chen B, Zhang X, Xu Y, Jin L, Qian H, and Liang ZF
- Abstract
Gastric cancer is a common malignant tumor of the digestive tract, with a low early diagnosis rate. N-methyl-N-nitro-N-nitroguanidine (MNNG) is one of the main risk factors for gastric cancer. Phytochemicals are healthy active substances derived from vegetables, fruits, nuts, tea, herbal medicines and other plants. Taking phytochemicals is a very promising strategy for the prevention and treatment of gastric cancer. Many studies have proved that phytochemicals have protective effects on MNNG induced gastric cancer via inhibiting cell proliferation, enhancing immunity, suppressing cell invasion and migration, inducing apoptosis and autophagy, blocking angiogenesis, inhibiting Helicobacter pylori infection as well as regulating metabolism and microbiota. The intervention and therapeutic effects of phytochemicals in MNNG induced gastric cancer have attracted more and more attention. In order to better study and explore the role, advantages and challenges of phytochemicals in MNNG induced gastric cancer, we summarized the intervention and therapeutic effects of phytochemicals in MNNG induced gastric cancer. This review may help to further promote the research and clinical application of phytochemicals in MNNG induced gastric cancer, and provide some new insights., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Lu, Chen, Zhang, Xu, Jin, Qian and Liang.)
- Published
- 2023
- Full Text
- View/download PDF
31. Identification of heat shock protein family A member 5 (HSPA5) targets involved in nonalcoholic fatty liver disease.
- Author
-
Rehati A, Abuduaini B, Liang Z, Chen D, and He F
- Subjects
- Humans, Heat-Shock Proteins genetics, Heat-Shock Proteins chemistry, Heat-Shock Proteins metabolism, HeLa Cells, Endoplasmic Reticulum Chaperone BiP, RNA, Messenger genetics, Non-alcoholic Fatty Liver Disease genetics
- Abstract
Heat shock protein family A (Hsp70) member 5 (HSPA5) is an endoplasmic reticulum chaperone, which regulates cell metabolism, particularly lipid metabolism. While HSPA5's role in regulating cell function is well described, HSPA5 binding to RNA and its biological function in nonalcoholic fatty liver disease (NAFLD) is still lacking. In the present study, the ability of HSPA5 to modulate alternative splicing (AS) of cellular genes was assessed using Real-Time PCR on 89 NAFLD-associated genes. RNA immunoprecipitation coupled to RNA sequencing (RIP-Seq) assays were also performed to identify cellular mRNAs bound by HSPA5. We obtained the HSPA5-bound RNA profile in HeLa cells and peak calling analysis revealed that HSPA5 binds to coding genes and lncRNAs. Moreover, RIP-Seq assays demonstrated that HSPA5 immunoprecipitates specific cellular mRNAs such as EGFR, NEAT1, LRP1 and TGFß1, which are important in the pathology of NAFLD. Finally, HSPA5 binding sites may be associated with splicing sites. We used the HOMER algorithm to search for motifs enriched in coding sequence (CDs) peaks, which identified over-representation of the AGAG motif in both sets of immunoprecipitated peaks. HSPA5 regulated genes at the 5'UTR alternative splicing and introns and in an AG-rich sequence-dependent manner. We propose that the HSPA5-AGAG interaction might play an important role in regulating alternative splicing of NAFLD-related genes. This report is the first to demonstrate that HSPA5 regulated pre-RNA alternative splicing, stability, or translation and affected target protein(s) via binding to lncRNA and mRNA linked to NAFLD., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
32. Preparation of Fe/Ni-MOFs for the Adsorption of Ciprofloxacin from Wastewater.
- Author
-
Wei F, Wang K, Li W, Ren Q, Qin L, Yu M, Liang Z, Nie M, and Wang S
- Subjects
- Wastewater, Adsorption, Spectroscopy, Fourier Transform Infrared, Kinetics, Hydrogen-Ion Concentration, Ciprofloxacin chemistry, Water Pollutants, Chemical chemistry
- Abstract
This work studies the use of Fe/Ni-MOFs for the removal of ciprofloxacin (CIP) in wastewater. Fe/Ni-MOFs are prepared by the solvothermal method and characterized by X-ray diffraction (XRD), a scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), and a thermal gravimetric analyzer (TG). Under the conditions of the concentration of 50 ppm, a mass of 30 mg, and a temperature of 30 °C, the maximum adsorption capacity of ciprofloxacin removal within 5 h was 232.1 mg/g. The maximum removal rate was 94.8% when 40 mg of the Fe/Ni-MOFs was added to the solution of 10 ppm ciprofloxacin. According to the pseudo-second-order (PSO) kinetic model, the R
2 values were all greater than 0.99, which proved that the adsorption theory of ciprofloxacin by Fe/Ni-MOFs was consistent with the practice. The adsorption results were mainly affected by solution pH and static electricity, as well as other factors. The Freundlich isotherm model characterized the adsorption of ciprofloxacin by Fe/Ni-MOFs as multilayer adsorption. The above results indicated that Fe/Ni-MOFs were effective in the practical application of ciprofloxacin removal.- Published
- 2023
- Full Text
- View/download PDF
33. Cyclic-di-AMP signalling in lactic acid bacteria.
- Author
-
Turner MS, Xiang Y, Liang ZX, Marcellin E, and Pham HT
- Subjects
- Bacterial Proteins genetics, Bacterial Proteins metabolism, Second Messenger Systems physiology, Adenosine Monophosphate, Cyclic AMP metabolism, Lactobacillales metabolism
- Abstract
Cyclic dimeric adenosine monophosphate (cyclic-di-AMP) is a nucleotide second messenger present in Gram-positive bacteria, Gram-negative bacteria and some Archaea. The intracellular concentration of cyclic-di-AMP is adjusted in response to environmental and cellular cues, primarily through the activities of synthesis and degradation enzymes. It performs its role by binding to protein and riboswitch receptors, many of which contribute to osmoregulation. Imbalances in cyclic-di-AMP can lead to pleiotropic phenotypes, affecting aspects such as growth, biofilm formation, virulence, and resistance to osmotic, acid, and antibiotic stressors. This review focuses on cyclic-di-AMP signalling in lactic acid bacteria (LAB) incorporating recent experimental discoveries and presenting a genomic analysis of signalling components from a variety of LAB, including those found in food, and commensal, probiotic, and pathogenic species. All LAB possess enzymes for the synthesis and degradation of cyclic-di-AMP, but are highly variable with regards to the receptors they possess. Studies in Lactococcus and Streptococcus have revealed a conserved function for cyclic-di-AMP in inhibiting the transport of potassium and glycine betaine, either through direct binding to transporters or to a transcriptional regulator. Structural analysis of several cyclic-di-AMP receptors from LAB has also provided insights into how this nucleotide exerts its influence., (© The Author(s) 2023. Published by Oxford University Press on behalf of FEMS.)
- Published
- 2023
- Full Text
- View/download PDF
34. Cyr61 Mediates Angiotensin II-Induced Podocyte Apoptosis via the Upregulation of TXNIP.
- Author
-
Ma J, Ma R, Zhao X, Wang Y, Liao S, Nong C, Lu F, Liang Z, Huang J, Huang Y, Zhu Z, and Wang J
- Subjects
- Up-Regulation, bcl-2-Associated X Protein genetics, bcl-2-Associated X Protein metabolism, Apoptosis genetics, Angiotensin II pharmacology, Podocytes metabolism
- Abstract
Purpose: It is well documented that angiotensin II (Ang II) elevation promotes apoptosis of podocytes in vivo and vitro , but the potential mechanism is still oscular. The current study is aimed at probing into the assignment of cysteine-rich protein 61 (Cyr61) in Ang II-induced podocyte apoptosis., Methods: Podocytes were treated with Ang II (10
-6 mol/L) for 48 hours to establish an injury model in vitro. Western blot assays were detected the expression of Cyr61, Cyt-c, Bax, and Bcl-2. Gene microarray was used to analyze the expression of mRNAs after treatment with Ang II. CRISPR/Cas9 technology was used to knock down Cyr61 and overexpress TXNIP gene, respectively., Results: The expression of Cyr61, TXNIP, Cyt-c, and Bax in podocytes treated with Ang II were upregulated, but the expression and apoptotic rates of Bcl-2 in podocytes were inhibited. The level of the above factors was not significantly different after the knockdown of Cyr61 with Ang II in podocytes. In Ang II group, when knocked down Cyr61, the expressed level of TXNIP, Cyt-c, and Bax was diminished after Ang II treatment; interestingly Bcl-2 expression and podocyte apoptotic rate were reduced. Under the stimulation of Ang II, the expression of Cyt-c and Bax were growing, whereas Bcl-2 was reduced, and the apoptotic rates were higher in the TXNIP overexpression group. Cyt-c and Bax were put on, whereas that of Bcl-2 was to be cut down when the Cyr61 was knockdown, and the apoptotic rates were gained in the TXNIP overexpression+Cyr61 knockdown group., Conclusions: The results of the study extrapolate that Cyr61 plays a dominant role in Ang II-induced podocyte apoptosis. Additionally, Cyr61 may mediate the Ang II-induced podocyte apoptosis by promoting the expression of TNXIP., Competing Interests: No potential conflict of interest was reported by the authors., (Copyright © 2023 Jingxue Ma et al.)- Published
- 2023
- Full Text
- View/download PDF
35. Artificial Intelligence-Based Rapid Design of Grease with Chemically Functionalized Graphene and Carbon Nanotubes as Lubrication Additives.
- Author
-
Wang S, Liang Z, Liu L, Wan P, Qian Q, Chen Y, Jia S, and Chen D
- Abstract
Rapid chemical functionalization of additives and efficient determination of their optimum concentrations are important for designing high-performance lubricants, especially under multi-additive conditions. Herein, chemically functionalized graphene (FGR) and carbon nanotubes (FCNTs) were rapidly prepared by microwave-assisted ball milling and subsequently introduced into grease as additives. The tribological properties of the additives in grease at different concentrations and ratios were measured using a four-ball test. A reliable artificial neural network (ANN) model was established according to a few test results. Subsequently, the optimal concentration of multiple additives in the grease was predicted using a genetic algorithm and experimentally validated. The results indicated that the introduction of FGR (0.14 wt %) and FCNT (0.16 wt %) improved the antifriction and anti-wear performance of the base grease by 25.66 and 29.34%, respectively. The results of the ANN model analysis and friction interface characterization indicate that such performance is principally attributed to the synergistic lubrication of the FGR and FCNT.
- Published
- 2023
- Full Text
- View/download PDF
36. Current state of CAR-T therapy for T-cell malignancies.
- Author
-
Luo L, Zhou X, Zhou L, Liang Z, Yang J, Tu S, and Li Y
- Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has been approved for relapsed/refractory B-cell lymphomas and greatly improves disease outcomes. The impressive success has inspired the application of this approach to other types of tumors. The relapsed/refractory T-cell malignancies are characteristic of high heterogeneity and poor prognoses. The efficacy of current treatments for this group of diseases is limited. CAR-T therapy is a promising solution to ameliorate the current therapeutic situation. One of the major challenges is that normal T-cells typically share mutual antigens with malignant cells, which causes fratricide and serious T-cell aplasia. Moreover, T-cells collected for CAR transduction could be contaminated by malignant T-cells. The selection of suitable target antigens is of vital importance to mitigate fratricide and T-cell aplasia. Using nanobody-derived or naturally selected CAR-T is the latest method to overcome fratricide. Allogeneic CAR-T products and CAR-NK-cells are expected to avoid tumor contamination. Herein, we review the advances in promising target antigens, the current results of CAR-T therapy clinical trials in T-cell malignancies, the obstacles of CAR-T therapy in T-cell malignancies, and the solutions to these issues., Competing Interests: The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article., (© The Author(s), 2022.)
- Published
- 2022
- Full Text
- View/download PDF
37. Non-coding RNAs: Role in diabetic foot and wound healing.
- Author
-
Tang YB, Uwimana MMP, Zhu SQ, Zhang LX, Wu Q, and Liang ZX
- Abstract
Diabetic foot ulcer (DFU) and poor wound healing are chronic complications in patients with diabetes. The increasing incidence of DFU has resulted in huge pressure worldwide. Diagnosing and treating this condition are therefore of great importance to control morbidity and improve prognosis. Finding new markers with potential diagnostic and therapeutic utility in DFU has gathered increasing interest. Wound healing is a process divided into three stages: Inflammation, proliferation, and regeneration. Non-coding RNAs (ncRNAs), which are small protected molecules transcribed from the genome without protein translation function, have emerged as important regulators of diabetes complications. The deregulation of ncRNAs may be linked to accelerated DFU development and delayed wound healing. Moreover, ncRNAs can be used for therapeutic purposes in diabetic wound healing. Herein, we summarize the role of microRNAs, long ncRNAs, and circular RNAs in diverse stages of DFU wound healing and their potential use as novel therapeutic targets., Competing Interests: Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article., (©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
38. Characterization of the Biosynthetic Gene Cluster and Shunt Products Yields Insights into the Biosynthesis of Balmoralmycin.
- Author
-
Ma GL, Xin L, Liao Y, Chong ZS, Candra H, Pang LM, Lee SQE, Gakuubi MM, Ng SB, and Liang ZX
- Subjects
- Humans, Biosynthetic Pathways genetics, Multigene Family, Polyketide Synthases genetics, Polyketide Synthases metabolism, Cell Line, Tumor, Polyketides metabolism, Streptomyces metabolism
- Abstract
Angucyclines are a family of structurally diverse, aromatic polyketides with some members that exhibit potent bioactivity. Angucyclines have also attracted considerable attention due to the intriguing biosynthetic origins that underlie their structural complexity and diversity. Balmoralmycin (compound 1) represents a unique group of angucyclines that contain an angular benz[ α ]anthracene tetracyclic system, a characteristic C-glycosidic bond-linked deoxy-sugar (d-olivose), and an unsaturated fatty acid chain. In this study, we identified a Streptomyces strain that produces balmoralmycin and seven biosynthetically related coproducts (compounds 2-8). Four of the coproducts (compounds 5-8) are novel compounds that feature a highly oxygenated or fragmented lactone ring, and three of them (compounds 3-5) exhibited cytotoxicity against the human pancreatic cancer cell line MIA PaCa-2 with IC
50 values ranging from 0.9 to 1.2 μg/mL. Genome sequencing and CRISPR/dCas9-assisted gene knockdown led to the identification of the ~43 kb balmoralmycin biosynthetic gene cluster ( bal BGC). The bal BGC encodes a type II polyketide synthase (PKS) system for assembling the angucycline aglycone, six enzymes for generating the deoxysugar d-olivose, and a hybrid type II/III PKS system for synthesizing the 2,4-decadienoic acid chain. Based on the genetic and chemical information, we propose a mechanism for the biosynthesis of balmoralmycin and the shunt products. The chemical and genetic studies yielded insights into the biosynthetic origin of the structural diversity of angucyclines. IMPORTANCE Angucyclines are structurally diverse aromatic polyketides that have attracted considerable attention due to their potent bioactivity and intriguing biosynthetic origin. Balmoralmycin is a representative of a small family of angucyclines with unique structural features and an unknown biosynthetic origin. We report a newly isolated Streptomyces strain that produces balmoralmycin in a high fermentation titer as well as several structurally related shunt products. Based on the chemical and genetic information, a biosynthetic pathway that involves a type II polyketide synthase (PKS) system, cyclases/aromatases, oxidoreductases, and other ancillary enzymes was established. The elucidation of the balmoralmycin pathway enriches our understanding of how structural diversity is generated in angucyclines and opens the door for the production of balmoralmycin derivatives via pathway engineering.- Published
- 2022
- Full Text
- View/download PDF
39. RALY regulate the proliferation and expression of immune/inflammatory response genes via alternative splicing of FOS.
- Author
-
Liang Z, Rehati A, Husaiyin E, Chen D, Jiyuan Z, and Abuduaini B
- Subjects
- Humans, HeLa Cells, Cell Proliferation, Transcriptome, Alternative Splicing, Heterogeneous-Nuclear Ribonucleoprotein Group C genetics, Heterogeneous-Nuclear Ribonucleoprotein Group C metabolism
- Abstract
RALY is a multifunctional RNA-binding protein involved in cancer metastasis, prognosis, and chemotherapy resistance in various cancers. However, the molecular mechanism of which is still unclear. We have established RALY overexpression cell lines and studied the effect of RALY on proliferation and apoptosis in HeLa cells. Then we used RNA-seq to analyze the transcriptomes data. Lastly, RT-qPCR experiments had performed to confirm the RNA-seq results. We found that the overexpression of RALY in HeLa cells inhibited proliferation. Moreover, the overexpression of RALY changed the gene expression profile, and the significant upregulation of genes involved immune/inflammatory response related biological process by NOD-like receptor signaling pathway cytokine-cytokine receptor interaction. The significant downregulation genes involved innate immune response by the Primary immunodeficiency pathway. Notably, IFIT1, IFIT2, IFTI3, IFI44, HERC4, and OASL expression had inhibited by the overexpression of RALY. Furthermore, RALY negatively regulates the expression of transcription factors FOS and FOSB. Notably, we found that 645 alternative splicing events had regulated by overexpression of RALY, which is highly enriched in transcription regulation, RNA splicing, and cell proliferation biological process by the metabolic pathway. We show that RALY regulates the expression of immune/inflammatory response-related genes via alternative splicing of FOS in HeLa cells. The novel role of RALY in regulating immune/inflammatory gene expression may explain its function in regulating chemotherapy resistance and provides novel insights into further exploring the molecular mechanism of RALY in regulating cancer immunity and chemo/immune therapies., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
40. Gastric cancer stem cell-derived exosomes promoted tobacco smoke-triggered development of gastric cancer by inducing the expression of circ670.
- Author
-
Liang ZF, Zhang Y, Guo W, Chen B, Fang S, and Qian H
- Subjects
- Humans, RNA, Circular genetics, Nicotiana adverse effects, Neoplastic Stem Cells, Stomach Neoplasms genetics, Tobacco Smoke Pollution, Exosomes
- Abstract
As one of the most common malignant cancers in the world, gastric cancer is caused by mang factors among which tobacco smoke is an important risk factor. Gastric cancer stem cells (GCSCs) and the derived exosomes play a key role in the occurrence and development of gastric cancer, and exosomal circRNA is considered as a new regulatory factor in the development of gastric cancer. However, it is unclear whether tobacco smoke can affect exosomes and their transport circRNAs to promote the development of gastric cancer. Herein, we provided a new insight into tobacco smoke promoting the progression of gastric cancer. In the present study, we demonstrated that tobacco smoke-induced exosomes promoted the spheroidizing ability, stemness genes expression, and epithelial-mesenchymal transition (EMT) process of GCSCs. We further found that hsa-circRNA-000670 (circ670) was up-regulated in tissues of gastric cancer patients with smoking history, tobacco smoke-induced GCSCs, and their exosomes. Functional assays have shown that circ670 knockdown inhibited the stemness and EMT process of GCSCs, whereas circ670 overexpression appeared to have an opposite effect. Our findings indicated that exosomal circ670 promotes the development of tobacco smoke-induced gastric cancer, which may provide insight into the mechanism of tobacco smoke promoting the progression of gastric cancer., (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
41. Enaminone Formation Drives the Coupling of Biosynthetic Pathways to Generate Cyclic Lipopeptides.
- Author
-
Candra H, Ma GL, En SLQ, and Liang ZX
- Subjects
- Peptides, Cyclic metabolism, Anti-Bacterial Agents metabolism, Lipopeptides metabolism, Aldehydes metabolism, Multigene Family, Biosynthetic Pathways, Streptomyces metabolism
- Abstract
A family of novel cyclic lipopeptides named tasikamides A-H (Tsk A-H) were discovered recently in Streptomyces tasikensis P46. Aside from the unique cyclic pentapeptide scaffold shared by the tasikamides, Tsk A-C contain a hydrazone bridge that connects the cyclic pentapeptide to the lipophilic alkyl 5-hydroxylanthranilate (AHA) moiety. Here we report the production of tasikamides I-K (Tsk I-K) by a mutant strain of S. tasikensis P46 that overexpresses two pathway-specific transcription regulators. Unlike Tsk A-C, Tsk I-K feature a rare enaminone-bridge that links the cyclic peptide scaffold to the AHA moiety. Our experimental data suggest that Tsk I-K are generated by the coupling of two biosynthetic pathways via a nonenzymatic condensation reaction between an arylamine and a β-keto aldehyde-containing precursor. The results underscore the nucleophilic and electrophilic reactivity of the β-keto aldehyde moiety and its ability to promote fragment coupling reactions in live microbial cells., (© 2022 Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
42. FAM96A and FAM96B function as new tumor suppressor genes in breast cancer through regulation of the Wnt/β-catenin signaling pathway.
- Author
-
Zhang DD, Sun XL, Liang ZY, Wang XY, and Zhang LN
- Subjects
- Cell Line, Tumor, Cell Movement genetics, Cell Proliferation genetics, Epithelial-Mesenchymal Transition genetics, Female, Gene Expression Regulation, Neoplastic genetics, Genes, Tumor Suppressor, Humans, Neoplasm Invasiveness genetics, beta Catenin genetics, beta Catenin metabolism, Breast Neoplasms pathology, Wnt Signaling Pathway genetics
- Abstract
Aims: Family with sequence similarity 96 member A and B (FAM96A and FAM96B) are two highly conserved homologous proteins belonging to MIP18 family. Some studies have shown that FAM96A and FAM96B are significantly down-regulated in human gastrointestinal stromal tumors, colon cancer, and liver cancer. However, the molecular mechanisms of FAM96A/B in breast cancer are unknown. This work aims to explore the roles of FAM96A/B in breast cancer progression., Main Methods: Specific siRNAs were used to down-regulate FAM96A/B expression, and recombinant plasmids were used to up-regulate FAM96A/B expression in breast cancer cells. Cell proliferation was measured using MTT and colony formation. Cell cycle and apoptosis were detected by flow cytometry. Cell migration and invasion were examined by wound healing and transwell assays. The relationships among FAM96A/B, EMT and Wnt/β-catenin pathway were determined by analyzing expression changes of classical markers., Key Findings: We found that FAM96A/B expression was down-regulated in breast cancer. FAM96A/B overexpression suppressed breast cancer cell proliferation, invasion and migration, induced cell apoptosis and caused cell cycle arrest. Conversely, FAM96A/B knockdown exhibited the opposite effects. Moreover, our data demonstrated that FAM96A/B overexpression suppressed EMT and Wnt/β-catenin pathway, while FAM96A/B knockdown showed the promoting effects on EMT and Wnt/β-catenin pathway. Furthermore, a Wnt pathway inhibitor, XAV-939 reversed the promoting effects of FAM96A/B knockdown on breast cancer progression., Significance: Our findings suggest that FAM96A/B may function as new tumor suppressor genes and inhibit breast cancer progression via modulating Wnt/β-catenin pathway, which can provide the potential markers for breast cancer diagnosis and therapy., Competing Interests: Declaration of competing interest The authors declare that they have no competing interests., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
43. Delayed diagnosis and management of necrotizing fasciitis of the left lower leg: A case report.
- Author
-
Zhang LX, Liang ZJ, Zhao BY, Shi XW, Zhang T, Liu H, and Yu XH
- Subjects
- Humans, Female, Aged, Leg, Delayed Diagnosis adverse effects, Anti-Bacterial Agents therapeutic use, Fasciitis, Necrotizing diagnosis, Fasciitis, Necrotizing surgery, Shock, Septic etiology
- Abstract
Introduction: Necrotizing fasciitis (NF) is a rare, severe soft tissue infection, characterized by rapid and extensive necrosis of the skin, subcutaneous tissue, and superficial and deep fascia. It is frequently misdiagnosed as other infectious diseases, leading to inappropriate treatment and potentially serious consequences. It may be complicated by septic shock and multiple organ failure with a fatal outcome., Patient Concerns: A 73-year-old woman presented with continuous itching, skin lesions, pain, and swelling of the outer side of her left leg. The patient was diagnosed with septic shock and multiorgan failure caused by left leg NF., Diagnosis: Septic shock and multiorgan failure caused by left leg NF., Interventions: Two surgeries were performed on the patient's leg, which effectively treated her septic shock and multiple organ dysfunction., Outcomes: The patient was followed up three times after her discharge. She had a good recovery, was generally well with no significant sequelae, and returned to her regular life., Conclusion: NF is an acute severe illness with high mortality. It is easily misdiagnosed, leading to delayed or erroneous treatment and serious (or potentially fatal) outcomes. Rapid and accurate diagnosis of NF is essential for patient recovery. In difficult cases, multidisciplinary consultations may be helpful. The management of NF includes early and thorough surgical debridement, antibiotics, and symptomatic treatment., Competing Interests: The authors have no conflicts of interest to disclose., (Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc.)
- Published
- 2022
- Full Text
- View/download PDF
44. CRISPR/Cas9 RNP-assisted validation of palmarumycin biosynthetic gene cluster in Lophiotrema sp. F6932.
- Author
-
Gakuubi MM, Ching KC, Munusamy M, Wibowo M, Lim CT, Ma GL, Liang ZX, Kanagasundaram Y, and Ng SB
- Abstract
Lophiotrema is a genus of ascomycetous fungi within the family Lophiotremataceae . Members of this genus have been isolated as endophytes from a wide range of host plants and also from plant debris within terrestrial and marine habitats, where they are thought to function as saprobes. Lophiotrema sp. F6932 was isolated from white mangrove ( Avicennia officinalis ) in Pulau Ubin Island, Singapore. Crude extracts from the fungus exhibited strong antibacterial activity, and bioassay-guided isolation and structure elucidation of bioactive constituents led to the isolation of palmarumycin C
8 and a new analog palmarumycin CP30 . Whole-genome sequencing analysis resulted in the identification of a putative type 1 iterative PKS (iPKS) predicated to be involved in the biosynthesis of palmarumycins. To verify the involvement of palmarumycin (PAL) gene cluster in the biosynthesis of these compounds, we employed ribonucleoprotein (RNP) - mediated CRISPR-Cas9 to induce targeted deletion of the ketosynthase (KS) domain in PAL. Double-strand breaks (DSBs) upstream and downstream of the KS domain was followed by homology-directed repair (HDR) with a hygromycin resistance cassette flanked by a 50 bp of homology on both sides of the DSBs. The resultant deletion mutants displayed completely different phenotypes compared to the wild-type strain, as they had different colony morphology and were no longer able to produce palmarumycins or melanin. This study, therefore, confirms the involvement of PAL in the biosynthesis of palmarumycins, and paves the way for implementing a similar approach in the characterization of other gene clusters of interest in this largely understudied fungal strain., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Gakuubi, Ching, Munusamy, Wibowo, Lim, Ma, Liang, Kanagasundaram and Ng.)- Published
- 2022
- Full Text
- View/download PDF
45. Silica-based Nanoparticles for Enzyme Immobilization and Delivery.
- Author
-
Zhao L, Zhang Y, Yang Y, and Yu C
- Subjects
- Catalysis, Enzymes, Immobilized chemistry, Silicon Dioxide chemistry, Nanoparticles chemistry, Nanostructures chemistry
- Abstract
Enzymes play an indispensable role in biosystems, catalyzing a variety of chemical and biochemical reactions with exceptionally high efficiency and selectivity. These features render them uniquely positioned in developing novel catalytic systems and therapeutics. However, their practical application is largely hindered by the vulnerability, low reusability and the inability to overcome the biological barriers of enzymes. Silica-based nanoparticles (SNPs) are a classic family of nanomaterials with tunable physicochemical properties, making them ideal candidates to address the intrinsic shortcomings of natural enzymes. SNPs not only improve the activity and durability of enzymes, but also provide precise spatiotemporal control over their intracellular as well as systemic biodistributions for boosting the catalytic outcome. Herein, the recent progress in SNPs for enzyme immobilization and delivery is summarized. The therapeutic applications, including cancer therapy and bacterial inhibition, are particularly highlighted. Our perspectives in this field, including current challenges and possible future research directions are also provided., (© 2022 Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
46. Improvement of CO 2 -Cured Sludge Ceramsite on the Mechanical Performances and Corrosion Resistance of Cement Concrete.
- Author
-
Xu F, Chang R, Zhang D, Liang Z, Wang K, and Wang H
- Abstract
The application of CO
2 curing on sludge ceramsite may improve its mechanical properties, and then increase the corresponding corrosion resistance. In this study, the influence of CO2 -cured sludge ceramsite on the strength and long-term properties of cement concrete is investigated. CO2 curing time ranges from 0 h to 2 d. The cylinder compressive strength and water absorption rate of CO2 -cured sludge ceramsite are first determined. Additionally, the flexural and compressive strengths, the chloride permeability and the freeze-thaw damage, as well as the corresponding thermal conductivity of cement concrete, are tested. Furthermore, the corrosion resistance of reinforcement inner-sludge-ceramsite cement concrete is measured. Finally, the scanning electron microscope photos of sludge ceramsite are obtained. Results show that the cylinder compressive strength of CO2 -cured sludge ceramsite is 15.1, ~34.2% higher than that of sludge ceramsite. Meanwhile, the water absorption rate of CO2 -cured sludge ceramsite is 39.6, ~82.4% higher than that of sludge ceramsite. The compressive strength and the flexural strength of cement concrete with CO2 -cured sludge ceramsite are 11.4 and 18.7, ~21.6% and ~31.5% higher than the cement concrete with sludge ceramsite, respectively. The resistance of NaCl freeze-thaw cycles, determined by comparing the mass loss rate and the loss rates of mechanical strengths, is effectively improved by CO2 curing, while the thermal conductivity of cement concrete is decreased by CO2 curing. The corrosion resistance of inner reinforcement is improved by the application of CO2 curing on sludge ceramsite.- Published
- 2022
- Full Text
- View/download PDF
47. Role of ferroptosis and ferroptosis-related non-coding RNAs in the occurrence and development of gastric cancer.
- Author
-
Lu L, Chen B, Xu Y, Zhang X, Jin L, Qian H, Wang Y, and Liang ZF
- Abstract
Gastric cancer (GC) is a malignant cancer of the digestive tract and is a life-threatening disease worldwide. Ferroptosis is a newly discovered form of regulated cell death, which involves the accumulation of iron-dependent lipid peroxides. It has been found that ferroptosis plays an important regulatory role in the occurrence, development, drug resistance, and prognosis of GC. Non-coding RNAs (ncRNAs) play a critical role in the occurrence and progression of a variety of diseases including GC. In recent years, the role of ferroptosis and ferroptosis-related ncRNAs (miRNA, lncRNA, and circRNA) in the occurrence, development, drug resistance, and prognosis of GC has attracted more and more attention. Herein, we briefly summarize the roles and functions of ferroptosis and ferroptosis-related ncRNAs in GC tumorigenesis, development, and prognosis. We also prospected the future research direction and challenges of ferroptosis and ferroptosis-related ncRNAs in GC., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Lu, Chen, Xu, Zhang, Jin, Qian, Wang and Liang.)
- Published
- 2022
- Full Text
- View/download PDF
48. Toxicity of Bacillus thuringiensis Strains Derived from the Novel Crystal Protein Cry31Aa with High Nematicidal Activity against Rice Parasitic Nematode Aphelenchoides besseyi .
- Author
-
Liang Z, Ali Q, Wang Y, Mu G, Kan X, Ren Y, Manghwar H, Gu Q, Wu H, and Gao X
- Subjects
- Animals, Antinematodal Agents metabolism, Antinematodal Agents pharmacology, Bacterial Proteins genetics, Bacterial Proteins metabolism, Bacterial Proteins pharmacology, Hydrogen Peroxide metabolism, Plants metabolism, Bacillus thuringiensis genetics, Oryza metabolism, Rhabditida metabolism, Tylenchida metabolism
- Abstract
The plant parasitic nematode, Aphelenchoides besseyi , is a serious pest causing severe damage to various crop plants and vegetables. The Bacillus thuringiensis (Bt) strains, GBAC46 and NMTD81, and the biological strain, FZB42, showed higher nematicidal activity against A. besseyi , by up to 88.80, 82.65, and 75.87%, respectively, in a 96-well plate experiment. We screened the whole genomes of the selected strains by protein-nucleic acid alignment. It was found that the Bt strain GBAC46 showed three novel crystal proteins, namely, Cry31Aa, Cry73Aa, and Cry40ORF, which likely provide for the safe control of nematodes. The Cry31Aa protein was composed of 802 amino acids with a molecular weight of 90.257 kDa and contained a conserved delta-endotoxin insecticidal domain. The Cry31Aa exhibited significant nematicidal activity against A. besseyi with a lethal concentration (LC
50 ) value of 131.80 μg/mL. Furthermore, the results of in vitro experiments (i.e., rhodamine and propidium iodide (PI) experiments) revealed that the Cry31Aa protein was taken up by A. besseyi , which caused damage to the nematode's intestinal cell membrane, indicating that the Cry31Aa produced a pore-formation toxin. In pot experiments, the selected strains GBAC46, NMTD81, and FZB42 significantly reduced the lesions on leaves by up to 33.56%, 45.66, and 30.34% and also enhanced physiological growth parameters such as root length (65.10, 50.65, and 55.60%), shoot length (68.10, 55.60, and 59.45%), and plant fresh weight (60.71, 56.45, and 55.65%), respectively. The number of nematodes obtained from the plants treated with the selected strains (i.e., GBAC46, NMTD81, and FZB42) and A. besseyi was significantly reduced, with 0.56, 0.83., 1.11, and 5.04 seedling mL-1 nematodes were achieved, respectively. Moreover, the qRT-PCR analysis showed that the defense-related genes were upregulated, and the activity of hydrogen peroxide (H2 O2 ) increased while malondialdehyde (MDA) decreased in rice leaves compared to the control. Therefore, it was concluded that the Bt strains GBAC46 and NMTD81 can promote rice growth, induce high expression of rice defense-related genes, and activate systemic resistance in rice. More importantly, the application of the novel Cry31Aa protein has high potential for the efficient and safe prevention and green control of plant parasitic nematodes.- Published
- 2022
- Full Text
- View/download PDF
49. Geotechnical Evaluation of Loess Modifications as the Sustainable Compacted Soil Liner Material in Solid Waste Landfill.
- Author
-
Zhang Z, Matlan SJ, Wang H, Pishro AA, Zhang L, Gao X, Liang Z, Liu X, and Zhao P
- Abstract
This paper studied the anti-seepage ability of the modified loess by using attapulgite, which is abundant in local areas. The possibility of using the modified loess as the sustainable compacted soil liner material in a solid waste landfill was also considered in this research. The materials were then evaluated using Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and an Impermeability Mechanism (IM). The experimental results showed that the permeability coefficient of the attapulgite-modified loess decreases significantly with increasing attapulgite content. However, it becomes less significant when the attapulgite level approaches 10%. Both cases can meet the landfill impermeability requirements, based on the attapulgite content remaining at 10%, adding 15% lime or 5% cement, respectively. The triaxial consolidation and drainage experiment was carried out to investigate the shear strength of the materials under three different working circumstances. The stress-strain curves of each specimen were produced, as were the cohesion and internal friction angle values. This research lays the groundwork for using attapulgite-modified loess as a landfill lining material. It establishes a solid platform for future studies on attapulgite adsorption and purifying performance in landfills.
- Published
- 2022
- Full Text
- View/download PDF
50. Enhancing the Discovery of Bioactive Secondary Metabolites From Fungal Endophytes Using Chemical Elicitation and Variation of Fermentation Media.
- Author
-
Gakuubi MM, Ching KC, Munusamy M, Wibowo M, Liang ZX, Kanagasundaram Y, and Ng SB
- Abstract
Endophytic microorganisms are an important source of bioactive secondary metabolites. In this study, fungal endophytes obtained from A*STAR's Natural Product Library (NPL) and previously isolated from different habitats of Singapore were investigated for their diversity, antimicrobial, and cytotoxic activities. A total of 222 fungal strains were identified on the basis of sequence analysis of ITS region of the rDNA gene. The identified fungal strains belong to 59 genera distributed in 20 orders. Majority of the identified strains (99%; 219 strains) belong to the phylum Ascomycota , while two strains belonged to the phylum Basidiomycota , and only one strain was from Mucoromycota phylum. The most dominant genus was Colletotrichum accounting for 27% of all the identified strains. Chemical elicitation using 5-azacytidine and suberoylanilide hydroxamic acid (SAHA) and variation of fermentation media resulted in the discovery of more bioactive strains. Bioassay-guided isolation and structure elucidation of active constituents from three prioritized fungal strains: Lophiotrema sp. F6932, Muyocopron laterale F5912, and Colletotrichum tropicicola F10154, led to the isolation of a known compound; palmarumycin C
8 and five novel compounds; palmarumycin CP30 , muyocopronol A-C and tropicicolide. Tropicicolide displayed the strongest antifungal activity against Aspergillus fumigatus with an IC50 value of 1.8 μg/ml but with a weaker activity against the Candida albicans presenting an IC50 of 7.1 μg/ml. Palmarumycin C8 revealed the best antiproliferative activity with IC50 values of 1.1 and 2.1 μg/ml against MIA PaCa-2 and PANC-1 cells, respectively., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Gakuubi, Ching, Munusamy, Wibowo, Liang, Kanagasundaram and Ng.)- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.