1. Differences in removal rates of virgin/decayed microplastics, viruses, activated carbon, and kaolin/montmorillonite clay particles by coagulation, flocculation, sedimentation, and rapid sand filtration during water treatment.
- Author
-
Nakazawa Y, Abe T, Matsui Y, Shinno K, Kobayashi S, Shirasaki N, and Matsushita T
- Subjects
- Bentonite, Charcoal, Clay, Filtration, Flocculation, Kaolin, Microplastics, Plastics, Sand, Viruses, Water Purification
- Abstract
One of the main purposes of drinking water treatment is to reduce turbidity originating from clay particles. Relatively little is known about the removal of other types of particles, including conventionally sized powdered activated carbon (PAC) and superfine PAC (SPAC), which are intentionally added during the treatment process; microplastic particles; and viruses. To address this knowledge gap, we conducted a preliminary investigation in full-scale water treatment plants and then studied the removal of these particles during coagulation-flocculation, sedimentation, and rapid sand filtration (CSF) in bench-scale experiments in which these particles were present together. Numbers of all target particles were greatly decreased by coagulation-flocculation and sedimentation (CS). Subsequent rapid sand filtration greatly reduced the concentrations of PAC and SPAC but not the concentrations of viruses, microplastic particles, and clay particles. Overall removal rates by CSF were 4.6 logs for PAC and SPAC, 3.5 logs for viruses, 2.9 logs for microplastics, and 2.8 logs for clay. The differences in removals were not explained by particle sizes or zeta potentials. However, for clays, PAC and SPAC, for which the particle size distributions were wide, smaller particles were less efficiently removed. The ratios of both clay to PAC and clay to SPAC particles increased greatly after rapid sand filtration because removal rates of PAC and SPAC particles were about 2 logs higher than removal rates of clay particles. The trend of greater reduction of PAC concentrations than turbidity was confirmed by measurements made in 14 full-scale water purification plants in which residual concentrations of PAC in treated water were very low, 40-200 particles/mL. Clay particles therefore accounted for most of the turbidity in sand filtrate, even though PAC was employed. The removal rate of microplastic particles was comparable to that of clays. Sufficient turbidity removal would therefore provide comparable removal of microplastics. We investigated the effect of mechanical/photochemical weathering on the removal of microplastics via CSF. Photochemical weathering caused a small increment in the removal rate of microplastics during CS but a small reduction in the removal rate of microplastics during rapid sand filtration; mechanical weathering decreased the removal rate via CS but increased the removal rate via rapid sand filtration. The changes of removal of microplastics might have been caused by changes of their zeta potential., (Copyright © 2021. Published by Elsevier Ltd.)
- Published
- 2021
- Full Text
- View/download PDF