1. Germanium layer transfer and device fabrication for monolithic 3D integration
- Author
-
Abedin, Ahmad and Abedin, Ahmad
- Abstract
Monolithic three-dimensional (M3D) integration, it has been proposed,can overcome the limitations of further circuits’ performance improvementand functionality expansion. The emergence of the internet of things (IoT) isdriving the semiconductor industry toward the fabrication of higher-performancecircuits with diverse functionality. On the one hand, the scaling of devices isreaching critical dimensions, which makes their further downscaling techno-logically difficult and economically challenging, whereas, on the other hand,the field of electronics is no longer limited only to developing circuits thatare meant for data processing. Sensors, processors, actuators, memories, andeven power storage units need to be efficiently integrated into a single chip tomake IoT work. M3D integration through stacking different layers of deviceson each other can potentially improve circuits’ performance by shorteningthe wiring length and reducing the interconnect delay. Using multiple tiersfor device fabrication makes it possible to integrate different materials withsuperior physical properties. It offers the advantage of fabricating higher-performance devices with multiple functionalities on a single chip. However,high-quality layer transfer and processing temperature budget are the majorchallenges in M3D integration. This thesis involves an in-depth explorationof the application of germanium (Ge) in monolithic 3D integration.Ge has been recognized as one of the most promising materials that canreplace silicon (Si) as the channel material for p-type field-effect transistors(pFETs) because of its high hole mobility. Ge pFETs can be fabricated atsubstantially lower temperatures compared to Si devices which makes theformer a good candidate for M3D integration. However, the fabrication ofhigh-quality Ge-on-insulator (GOI) layers with superior thickness homogene-ity, low residual doping, and a sufficiently good interface with buried oxide(BOX) has been challenging.This thesis used low-tem, Sakernas internet (eng. Internet of Things, IoT) driver halvledarindustrinmot tillverkning av högprestanda komponenter och kretsar med flertal funk-tionaliteter. Å ena sidan skalas komponenter ned till storlekar där ytterligarenedskalning blir teknologiskt svårt och ekonomiskt utmanande. Å andra si-dan är dagens elektronik inte längre begränsad till kretsar för databehandling.För att sakernas internet ska fungera behöver sensorer, processorer, styrdon,datorminne och även energilagringsenheter integreras på ett effektivt sätt i ge-mensamma chip. Monolitisk 3-dimensionell integration (M3D) baseras på attstapla olika komponentnivåer på varandra. Detta tillvägagångssätt är en avdem mest lovande metoderna för att förbättra kretsarnas prestanda. Prestan-dan förbättras genom att förkorta elektriska ledare och minska fördröjningen iledarna. Att ha flera komponentnivåer möjliggör integration av komponenter,som kan använda sig av olika material med högkvalitetsegenskaper för olikatillämpningar och funktioner, i ett enda chip. De stora utmaningarna för M3Där högkvalitétsöverföring av skikt och begränsad processtemperatursbudget.Germanium (Ge) anses vara det bästa materialet för att ersätta kisel (Si) somkanalmaterial i p-typs fälteffektstransistorer (pFET) tack vare dess höga hål-mobilitet. Vidare anses germanium lovande för M3D-integration tack germa-niumtransistorernas jämförelsevisa låga processtemperatur mot motsvarandekiseltransistorer. Dock har tillverkning av germanium-på-isolator (eng. germa-nium on insulator, GOI) flera utmaningar: tjockleken på germaniumskiktetmåste vara jämnt över skivan, dopningen måste vara låg och gränssnittet motden begravda oxiden (eng. buried oxide, BOX) måste vara tillräckligt god.I denna avhandling används skivbondning vid låg temperatur och tillbaka-etsför att tillverka GOI-substrat för M3D-tillämpningar. En unik stapling av epi-taxiellt växta skikt har designats och tillverkats för detta ändamål. Skiktstap-lingen innehåller ett relaxerad b, QC 20210506
- Published
- 2021