1. Contribution to supervised representation learning: algorithms and applications.
- Author
-
Moujahid Moujahid, Abdelmalik, Dornaika, Fadi, Ciencia de la computación e inteligencia artificial, Konputazio zientziak eta adimen artifiziala, Ahmad, Khoder, Moujahid Moujahid, Abdelmalik, Dornaika, Fadi, Ciencia de la computación e inteligencia artificial, Konputazio zientziak eta adimen artifiziala, and Ahmad, Khoder
- Abstract
278 p., In this thesis, we focus on supervised learning methods for pattern categorization. In this context, itremains a major challenge to establish efficient relationships between the discriminant properties of theextracted features and the inter-class sparsity structure.Our first attempt to address this problem was to develop a method called "Robust Discriminant Analysiswith Feature Selection and Inter-class Sparsity" (RDA_FSIS). This method performs feature selectionand extraction simultaneously. The targeted projection transformation focuses on the most discriminativeoriginal features while guaranteeing that the extracted (or transformed) features belonging to the sameclass share a common sparse structure, which contributes to small intra-class distances.In a further study on this approach, some improvements have been introduced in terms of theoptimization criterion and the applied optimization process. In fact, we proposed an improved version ofthe original RDA_FSIS called "Enhanced Discriminant Analysis with Class Sparsity using GradientMethod" (EDA_CS). The basic improvement is twofold: on the first hand, in the alternatingoptimization, we update the linear transformation and tune it with the gradient descent method, resultingin a more efficient and less complex solution than the closed form adopted in RDA_FSIS.On the other hand, the method could be used as a fine-tuning technique for many feature extractionmethods. The main feature of this approach lies in the fact that it is a gradient descent based refinementapplied to a closed form solution. This makes it suitable for combining several extraction methods andcan thus improve the performance of the classification process.In accordance with the above methods, we proposed a hybrid linear feature extraction scheme called"feature extraction using gradient descent with hybrid initialization" (FE_GD_HI). This method, basedon a unified criterion, was able to take advantage of several powerful linear discriminant methods.
- Published
- 2021