1. Detección y clasificación de malas hierbas mediante drones y redes neuronales profundas: creación de mapas para tratamiento localizado
- Author
-
European Commission, Agencia Estatal de Investigación (España), Mesías-Ruiz, Gustavo A. [0000-0002-3774-4121], Borra-Serrano, Irene [0000-0003-3444-3099], Dorado, José [0000-0002-2268-2562], Mesías-Ruiz, Gustavo A., Peña, José, de Castro, Ana, Borra-Serrano, Irene, Dorado, José, European Commission, Agencia Estatal de Investigación (España), Mesías-Ruiz, Gustavo A. [0000-0002-3774-4121], Borra-Serrano, Irene [0000-0003-3444-3099], Dorado, José [0000-0002-2268-2562], Mesías-Ruiz, Gustavo A., Peña, José, de Castro, Ana, Borra-Serrano, Irene, and Dorado, José
- Abstract
[EN] Accurate detection and identification of weeds are essential in the implementation of Precision Agriculture (PA). In this study, we addressed the detection and classification of weeds in maize and tomato in their early growth stages by integrating images acquired from UAVs and analysis based on advanced convolutional neural networks. Subsequently, the objective of this research was the creation of geo-referenced maps that would allow localized and selective post-emergence management of weed species. Our results indicate that the combination of UAV-captured imagery and deep learning algorithm-based image analysis provides an effective solution for this purpose. The accuracy and efficiency achieved in the identification of weeds in their early stage were promising, both in the set of species present in the crop and in individual species. This advance is of great relevance in the field of PA, as it would allow a more efficient management of weeds by selecting the herbicide according to the type of weed present, reducing the use of herbicidesand ultimately contributing to the sustainability and profitability of agriculture. In addition, the generation of geo-referenced maps facilitates real-time decision making. In summary, this study suggests that the combination of emerging technologies, such as drones and deep neural networks, may be applicable tools in localized weed management in the context of PA., [ES] La detección precisa y la identificación de malas hierbas son esenciales en la implementación de la Agricultura de Precisión (AP). En este estudio, se abordó la detección y la clasificación de malas hierbas en maíz y tomate en sus etapas tempranas de crecimiento mediante la integración de imágenes adquiridas desde drones y análisis basado en avanzadas redes neuronales convolucionales. Posteriormente, el objetivo de esta investigación fue la creación de mapas georreferenciados que permitieran una gestión en post-emergencia localizada y selectiva de las especies de malas hierbas. Nuestros resultados indican que la combinación de imágenes captadas por drones y un análisis de las mismas basado en algoritmos de aprendizaje profundo proporciona una solución efectiva para este propósito. La precisión y eficiencia alcanzadas en la identificación de malas hierbas en su etapa temprana fueron prometedoras, tanto en el conjunto de especies presentes en el cultivo como en especies individuales. Este avance es de gran relevancia en el ámbito de la AP, ya que permitiría una gestión más eficiente de las malas hierbas mediante la selección del herbicida según el tipo de mala hierba presente, reduciendo el uso de herbicidas y, en última instancia, contribuyendo a la sostenibilidad y la rentabilidad de la agricultura. Además, la generación de mapas georreferenciados facilita la toma de decisiones en tiempo real. En resumen, este estudio sugiere que la combinación de tecnologías emergentes, como drones y redes neuronales profundas, pueden ser herramientas aplicables en el manejo localizado de malas hierbas en el contexto de la AP.
- Published
- 2024