12 results on '"Composite scaffold"'
Search Results
2. The development of strontium-substituted bioactive glass composite scaffolds for patient-specific bone repair
- Author
-
Ainsworth, Madison and Ainsworth, Madison
- Abstract
Large (critical-sized) bone defects present a regenerative challenge to the body. Scaffold-based tissue engineering techniques can potentially address the challenge through the convergence of patient-specific design and novel biomaterials. This project investigated the in vitro bone forming capacity of a bioactive composite biomaterial scaffold produced with a high-resolution 3D printing technique: melt electrowriting (MEW). The MEW fabricated composite material was found to enhance the differentiation of bone-forming cells.
- Published
- 2020
3. Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering
- Author
-
Camarero-Espinosa, Sandra, Camarero-Espinosa, Sandra, Calore, Andrea, Wilbers, Arnold, Harings, Jules, Moroni, Lorenzo, Camarero-Espinosa, Sandra, Camarero-Espinosa, Sandra, Calore, Andrea, Wilbers, Arnold, Harings, Jules, and Moroni, Lorenzo
- Abstract
Although a growing knowledge on the field of tissue engineering of articular cartilage exists, reconstruction or in-vitro growth of functional hyaline tissue still represents an unmet challenge. Despite the simplicity of the tissue in terms of cell population and absence of innervation and vascularization, the outstanding mechanical properties of articular cartilage, which are the result of the specificity of its extra cellular matrix (ECM), are difficult to mimic. Most importantly, controlling the differentiation state or phenotype of chondrocytes, which are responsible of the deposition of this specialized ECM. represents a milestone in the regeneration of native articular cartilage. In this study, we fabricated fused deposition modelled (FDM) scaffolds with different pore sizes and architectures from an elastic and biodegradable poly(ester)urethane (PEU) with mechanical properties that can be modulated by design, and that ranged the elasticity of articular cartilage. Cell culture in additive manufactured 3D scaffolds exceeded the chondrogenic potential of the gold-standard pellet culture. In-vitro cell culture studies demonstrated the intrinsic potential of elastic (PEU) to drive the re-differentiation of de-differentiated chondrocytes when cultured in-vitro, in differentiation or basal media, better than pellet cultures. The formation of neo-tissue was assessed as a high deposition of GAGs and fibrillar collagen II, and a high expression of typical chondrogenic markers. Moreover, the collagen II / collagen I ratio commonly used to evaluate the differentiation state of chondrocytes (ratio > 1 being chondrocytes and, ratio <0 being de-differentiated chondrocytes) was higher than 5.Statement of significanceTissue engineering of articular cartilage requires material scaffolds capable of driving the deposition of a coherent and specific ECM representative of articular cartilage. Materials explored so far account for low mechanical properties (h
- Published
- 2020
4. DEVELOPMENT OF A HYBRID 3D PRINTING STRATEGY FOR NIPPLE RECONSTRUCTION
- Author
-
Van Belleghem, Sarah Miho and Van Belleghem, Sarah Miho
- Abstract
Breast cancer and its most radical treatment, the mastectomy, significantly impose both physical transformations and emotional pain in thousands of women across the globe. Although reconstructive surgery is viewed as a possible recovery route for a lost symmetry and gender identity, it provides these patients with a breast mound whose most notable feature is scarring from the initial invasive procedure. Restoring the appearance of a nipple-areola complex directly on the breast represents an important psychological healing experience for these women and remains an unresolved clinical challenge, as current restorative techniques using Skin Flap Suturing (SFS) renders a flattened disfigured skin tab within a single year and requires subsequent surgeries. A tissue-engineered scaffold designed to integrate with the breast skin can not only aid in the development of a more robust and aesthetically pleasing nipple but can also aid in minimizing the patients’ prominent mastectomy scars. As 3D printing has become a popular and advantageous way to produce scaffolds with complex, patient-specific structures, this technology holds great promise for the fabrication of custom shaped nipple-areola grafts per any breast size. The work presented here is aimed at the development of a hybrid scaffold, composed of complementary biodegradable and synthetic hydrogels, that fosters the regeneration of a viable dermal layer in the form of a nipple-areola complex. The first aim of this research defined a dynamic dual bioink 3D printing strategy to produce soft tissue grafts that allow for enhanced host integration and volume retention. A new shape analysis technique utilizing CloudCompare software was also demonstrated to expand our available toolbox for assessing scaffold aesthetic properties. We then extended both modular printing and shape assessment techniques to the fabrication of a nipple-areola scaffold in the second aim, where both structural and bioactive components of the design w
- Published
- 2020
5. Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering
- Author
-
Camarero-Espinosa, Sandra, Calore, Andrea, Wilbers, Arnold, Harings, Jules, Moroni, Lorenzo, Camarero-Espinosa, Sandra, Calore, Andrea, Wilbers, Arnold, Harings, Jules, and Moroni, Lorenzo
- Abstract
Although a growing knowledge on the field of tissue engineering of articular cartilage exists, reconstruction or in-vitro growth of functional hyaline tissue still represents an unmet challenge. Despite the simplicity of the tissue in terms of cell population and absence of innervation and vascularization, the outstanding mechanical properties of articular cartilage, which are the result of the specificity of its extra cellular matrix (ECM), are difficult to mimic. Most importantly, controlling the differentiation state or phenotype of chondrocytes, which are responsible of the deposition of this specialized ECM. represents a milestone in the regeneration of native articular cartilage. In this study, we fabricated fused deposition modelled (FDM) scaffolds with different pore sizes and architectures from an elastic and biodegradable poly(ester)urethane (PEU) with mechanical properties that can be modulated by design, and that ranged the elasticity of articular cartilage. Cell culture in additive manufactured 3D scaffolds exceeded the chondrogenic potential of the gold-standard pellet culture. In-vitro cell culture studies demonstrated the intrinsic potential of elastic (PEU) to drive the re-differentiation of de-differentiated chondrocytes when cultured in-vitro, in differentiation or basal media, better than pellet cultures. The formation of neo-tissue was assessed as a high deposition of GAGs and fibrillar collagen II, and a high expression of typical chondrogenic markers. Moreover, the collagen II / collagen I ratio commonly used to evaluate the differentiation state of chondrocytes (ratio > 1 being chondrocytes and, ratio <0 being de-differentiated chondrocytes) was higher than 5.Statement of significanceTissue engineering of articular cartilage requires material scaffolds capable of driving the deposition of a coherent and specific ECM representative of articular cartilage. Materials explored so far account for low mechanical properties (h
- Published
- 2020
6. Development of melt electrospun composite scaffolds for bone regeneration
- Author
-
Ren, Jiongyu and Ren, Jiongyu
- Abstract
This thesis was a step forward in the development of an effective and patient-specific treatment for bone tissue loss using synthetic tissue engineered constructs. A novel polycaprolactone/strontium-substituted bioactive glass composite was fabricated into scaffolds with highly ordered fibre structure and promising osteogenic potential using an advanced additive manufacturing technique known as melt-electrospinning. The findings of this thesis provide an indispensable link in our understanding of future cell-free treatment for bone defects utilising fully synthetic bioactive scaffolds. The thesis also developed several histological assessment tools for evaluating current and future tissue engineered bone constructs utilised in pre-clinical animal studies.
- Published
- 2017
7. Bioreactor culture duration of engineered constructs influences bone formation by mesenchymal stem cells.
- Author
-
Mitra, Debika, Mitra, Debika, Whitehead, Jacklyn, Yasui, Osamu W, Leach, J Kent, Mitra, Debika, Mitra, Debika, Whitehead, Jacklyn, Yasui, Osamu W, and Leach, J Kent
- Abstract
Perfusion culture of mesenchymal stem cells (MSCs) seeded in biomaterial scaffolds provides nutrients for cell survival, enhances extracellular matrix deposition, and increases osteogenic cell differentiation. However, there is no consensus on the appropriate perfusion duration of cellular constructs in vitro to boost their bone forming capacity in vivo. We investigated this phenomenon by culturing human MSCs in macroporous composite scaffolds in a direct perfusion bioreactor and compared their response to scaffolds in continuous dynamic culture conditions on an XYZ shaker. Cell seeding in continuous perfusion bioreactors resulted in more uniform MSC distribution than static seeding. We observed similar calcium deposition in all composite scaffolds over 21 days of bioreactor culture, regardless of pore size. Compared to scaffolds in dynamic culture, perfused scaffolds exhibited increased DNA content and expression of osteogenic markers up to 14 days in culture that plateaued thereafter. We then evaluated the effect of perfusion culture duration on bone formation when MSC-seeded scaffolds were implanted in a murine ectopic site. Human MSCs persisted in all scaffolds at 2 weeks in vivo, and we observed increased neovascularization in constructs cultured under perfusion for 7 days relative to those cultured for 1 day within each gender. At 8 weeks post-implantation, we observed greater bone volume fraction, bone mineral density, tissue ingrowth, collagen density, and osteoblastic markers in bioreactor constructs cultured for 14 days compared to those cultured for 1 or 7 days, and acellular constructs. Taken together, these data demonstrate that culturing MSCs under perfusion culture for at least 14 days in vitro improves the quantity and quality of bone formation in vivo. This study highlights the need for optimizing in vitro bioreactor culture duration of engineered constructs to achieve the desired level of bone formation.
- Published
- 2017
8. Neuroregenerative effects of olfactory ensheathing cells transplanted in a multi-layered conductive nanofibrous conduit in peripheral nerve repair in rats
- Author
-
Kabiri, Mahboubeh, Oraee-Yazdani, Saeed, Shafiee, Abbas, Ahvaz, Hana Hanaee, Dodel, Masumeh, Vaseei, Mohammad, Soleimani, Masoud, Kabiri, Mahboubeh, Oraee-Yazdani, Saeed, Shafiee, Abbas, Ahvaz, Hana Hanaee, Dodel, Masumeh, Vaseei, Mohammad, and Soleimani, Masoud
- Abstract
Background: The purpose of this study was to evaluate the efficacy of a multi-layered conductive nanofibrous hollow conduit in combination with olfactory ensheathing cells (OEC) to promote peripheral nerve regeneration. We aimed to harness both the topographical and electrical cues of the aligned conductive nanofibrous singlewalled carbon nanotube/ poly (L-lactic acid) (SWCNT/PLLA) scaffolds along with the neurotrophic features of OEC in a nerve tissue engineered approach. Results: We demonstrated that SWCNT/PLLA composite scaffolds support the adhesion, growth, survival and proliferation of OEC. Using microsurgical techniques, the tissue engineered nerve conduits were interposed into an 8 mm gap in sciatic nerve defects in rats. Functional recovery was evaluated using sciatic functional index (SFI) fortnightly after the surgery. Histological analyses including immunohistochemistry for S100 and NF markers along with toluidine blue staining (nerve thickness) and TEM imaging (myelin sheath thickness) of the sections from middle and distal parts of nerve grafts showed an increased regeneration in cell/scaffold group compared with cell-free scaffold and silicone groups. Neural regeneration in cell/scaffold group was very closely similar to autograft group, as deduced from SFI scores and histological assessments. Conclusions: Our results indicated that the tissue engineered construct made of rolled sheet of SWCNT/PLLA nanofibrous scaffolds and OEC could promote axonal outgrowth and peripheral nerve regeneration suggesting them as a promising alternative in nerve tissue engineering.
- Published
- 2015
9. Strategies for the Fabrication of Cellularized Micro-Fiber/Hydrogel Composites for Ligament Tissue Engineering
- Author
-
Thayer, Patrick Scott and Thayer, Patrick Scott
- Abstract
Partial or complete tears of the anterior cruciate ligament (ACL) can greatly afflict quality of life and often require surgical reconstruction with autograft or allograft tissue to restore native knee biomechanical function. However, limitations exist with these treatments that include donor site pain and weakness found with autografts, and longer "ligamentization" and integration times due to the devitalization of allograft tissue. Alternatively, a tissue engineering approach has been proposed for the fabrication of patient-specific grafts that can more rapidly and completely heal after ACL reconstruction. Electrospun micro-fiber networks have been widely utilized as biomaterial scaffolds to support the growth and differentiation of mesenchymal stem cells toward many tissue lineages including ligament. However, these micro-fiber networks do not possess suitable sizes and shapes for a ligament application and cannot support cell infiltration. The objective of this work was to develop techniques to 1) rapidly cellularize micro-fiber networks, 2) assemble micro-fiber networks into cylindrical composites, 3) provide cues to mesenchymal stem cells (MSCs) to guide their differentiation toward a ligament phenotype. The cellularization of micro-fiber networks was performed utilizing a co-electrospinning/electrospraying technique. Cells deposited within a cell culture medium solution remained where they were deposited and did not proliferate. The inclusion of space-filling hydrogel network such as collagen was necessary to reduce the density of the micro-fiber network to facilitate spreading. However, it became apparent that the incorporation of significant collagen phase was necessary for long-term MSC survival within the micro-fiber network. Next, two approaches were developed to fabricate large cylindrical, composites. The first approach utilized a co-electrospinning/electrospraying technique to generate micro-fiber/collagen composites that were subsequently rolled into
- Published
- 2015
10. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration
- Author
-
Poh, Su, Hutmacher, Dietmar, Stevens, Molly, Woodruff, Mia, Poh, Su, Hutmacher, Dietmar, Stevens, Molly, and Woodruff, Mia
- Abstract
Here we fabricate and characterise bioactive composite scaffolds for bone tissue engineering applications. 45S5 Bioglass® (45S5) or strontium-substituted bioactive glass (SrBG) were incorporated into polycaprolactone (PCL) and fabricated into 3D bioactive composite scaffolds utilising additive manufacturing technology. We show that composite scaffolds (PCL/45S5 and PCL/SrBG) can be reproducibly manufactured with a scaffold morphology highly resembling that of PCL scaffolds. Additionally, micro-CT analysis reveals BG particles were homogeneously distributed throughout the scaffolds. Mechanical data suggested that PCL/45S5 and PCL/SrBG composite scaffolds have higher compressive Young’s modulus compared to PCL scaffolds at similar porosity (~75%). After 1 day in accelerated degradation conditions using 5M NaOH, PCL/SrBG, PCL/45S5 and PCL lost 48.6 ±3.8%, 12.1 ±1% and 1.6 ±1% of its original mass, respectively. In vitro studies were conducted using MC3T3 cells under normal and osteogenic conditions. All scaffolds were shown to be non-cytotoxic, and supported cell attachment and proliferation. Our results also indicate that the inclusion of bioactive glass (BG) promotes precipitation of calcium phosphate on the scaffold surfaces which leads to earlier cell differentiation and matrix mineralisation when compared to PCL scaffolds. However, as indicated by ALP activity, no significant difference in osteoblast differentiation was found between PCL/45S5 and PCL/SrBG scaffolds. These results suggest that PCL/45S5 and PCL/SrBG composite scaffold shows potential as a next generation bone scaffold.
- Published
- 2013
11. A poly(lactic-co-glycolic acid) knitted scaffold for tendon tissue engineering: an in vitro and in vivo study
- Author
-
Vaquette, Cedryck, Slimani, Said, Kahn, Cyril, Tran, Nguyen, Rahouadj, Rachid, Wang, Xiong, Vaquette, Cedryck, Slimani, Said, Kahn, Cyril, Tran, Nguyen, Rahouadj, Rachid, and Wang, Xiong
- Abstract
We have designed a composite scaffold for potential use in tendon or ligament tissue engineering. The composite scaffold was made of a cellularized alginate gel that encapsulated a knitted structure. Our hypothesis was that the alginate would act as a cell carrier and deliver cells to the injury site while the knitted structure would provide mechanical strength to the composite construct. The mechanical behaviour and the degradation profile of the poly(lactic-co-glycolic acid) knitted scaffolds were evaluated. We found that our scaffolds had an elastic modulus of 750 MPa and that they lost their physical integrity within 7 weeks of in vitro incubation. Autologous rabbit mesenchymal stem cell seeded composite scaffolds were implanted in a 1-cm-long defect created in the rabbit tendon, and the biomechanical properties and the morphology of the regenerated tissues were evaluated after 13 weeks. The regenerated tendons presented higher normalized elastic modulus of (60%) when compared with naturally healed tendons (40%). The histological study showed a higher cell density and vascularization in the regenerated tendons.
- Published
- 2010
12. The stimulation of healing within a rat calvarial defect my mPCL-TCP/collagen scaffolds loaded with rhBMP-2
- Author
-
Sawyer, Amber, Song, Shun, Susanto, Evelyn, Chuan, Peiying, Lam, Christopher, Woodruff, Mia, Hutmacher, Dietmar, Cool, Simon, Sawyer, Amber, Song, Shun, Susanto, Evelyn, Chuan, Peiying, Lam, Christopher, Woodruff, Mia, Hutmacher, Dietmar, and Cool, Simon
- Abstract
Bone morphogenetic proteins (BMPs) have been widely investigated for their clinical use in bone repair and it is known that a suitable carrier matrix to deliver them is essential for optimal bone regeneration within a specific defect site. Fused deposited modeling (FDM) allows for the fabrication of medical grade poly 3-caprolactone/tricalcium phosphate (mPCL–TCP) scaffolds with high reproducibility and tailor designed dimensions. Here we loaded FDM fabricated mPCL–TCP/collagen scaffolds with 5 mg recombinant human (rh)BMP-2 and evaluated bone healing within a rat calvarial critical-sized defect. Using a comprehensive approach, this study assessed the newly regenerated bone employing microcomputed tomography (mCT), histology/histomorphometry, and mechanical assessments. By 15 weeks, mPCL–TCP/collagen/rhBMP-2 defects exhibited complete healing of the calvarium whereas the non- BMP-2-loaded scaffolds showed significant less bone ingrowth, as confirmed by mCT. Histomorphometry revealed significantly increased bone healing amongst the rhBMP-2 groups compared to non-treated scaffolds at 4 and 15 weeks, although the % BV/TV did not indicate complete mineralisation of the entire defect site. Hence, our study confirms that it is important to combine microCt and histomorphometry to be able to study bone regeneration comprehensively in 3D. A significant up-regulation of the osteogenic proteins, type I collagen and osteocalcin, was evident at both time points in rhBMP-2 groups. Although mineral apposition rates at 15 weeks were statistically equivalent amongst treatment groups, microcompression and push-out strengths indicated superior bone quality at 15 weeks for defects treated with mPCL–TCP/collagen/rhBMP-2. Consistently over all modalities, the progression of healing was from empty defect < mPCL–TCP/collagen < mPCL–TCP/collagen/rhBMP-2, providing substantiating data to support the hypothesis that the release of rhBMP-2 from FDM-created mPCL–TCP/collagen scaffolds is a clin
- Published
- 2009
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.