1. Varietats lorentzianes en la representació dels estats estacionaris dels àtoms hidrogenoides en la teoria de de Broglie - Bohm. Uns models heurístics
- Author
-
Fullana Alfonso, Màrius Josep, Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada, Ministerio de Ciencia, Innovación y Universidades, European Regional Development Fund, Gómez Blanch, Guillem, Fullana Alfonso, Màrius Josep, Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada, Ministerio de Ciencia, Innovación y Universidades, European Regional Development Fund, and Gómez Blanch, Guillem
- Abstract
[EN] This thesis aims to find out the applicability of Lorentzian geometry to represent the motion of the electron in hydrogen atoms according to the de Broglie-Bohm quantum theory (dBB). It starts from the observation that electrons behave differently when they are part of atomic systems than when they are unbound. While these, when describing curvilinear trajectories emit energy, in electrons bounded to hydrogen atoms according to dBB describe circular stationary trajectories, without energy emission. The above consideration suggests the hypothesis that electrons bounded to hydrogen atoms move in curved spaces, in which their trajectories are geodesics and therefore without acceleration or energy emission that would imply instability of matter. We use Lorentzian geometry and some heuristic concepts of Einstein's Theory of General Relativity to describe this space-time. Furthermore, we establish an equivalence in the differential field by the tetravelocity and use Levi-Civita connectors, which unify metric and affine geodesics. We thus arrive at the formulation of a theorem and several corollaries that affect the components of the metrics that satisfy the previous hypothesis. These metrics must also achieve the condition of being common to all possible trajectories of electrons of the same magnetic quantum state and two additional hypotheses: that the scalar curvature is positive (in order to avoid geodesic trajectories that escape to infinity) and that the energy component of the momentum-energy tensor corresponding to the Einstein field equations is positive, since although, in principle, this is inapplicable to quantum systems, modern modifications suggest that it is a plausible assumption. With these conditions, we undertake the search for metrics that meet the aforementioned restrictions. We start with two simple metrics that meet the requirements of common space-time and the geodesic character of the trajectories, but the curvature and the energy component of, [CAT] Aquesta tesi s'adreça a esbrinar l'aplicabilitat de la geometria lorentziana per a representar el moviment de l'electró en àtoms hidrogenoides segons la teoria quàntica de de Broglie-Bohm (dBB). Parteix de la constatació que els electrons es comporten de manera diferent quan formen part de sistemes atòmics que quan són no lligats. Mentre que aquests, quan descriuen trajectòries curvilínies emeten energia, en els electrons lligats a àtoms hidrogenoides segons dBB descriuen trajectòries circulars de manera estacionària, sense emissió energètica. L'anterior consideració ens suggereix la hipòtesi que els electrons lligats a àtoms hidrogenoides es mouen en espais corbats, en què llurs trajectòries en són geodèsiques i per tant sense acceleració ni emissió energètica que implicarien inestabilitat de la matèria. Utilitzem la geometria lorentziana i alguns conceptes de la Teoria de la Relativitat General d'Einstein, amb caràcter heurístic, per a descriure aquest espai-temps. Establim una equivalència en l'àmbit diferencial mitjançant la tetravelocitat i utilitzem connectors de Levi-Civita, que unifiquen les geodèsiques mètriques i les afins. Arribem així a la formulació d'un teorema i diversos corol·laris que afecten els components de les mètriques que satisfan l'anterior hipòtesi. Aquestes mètriques han de complir a més la condició de ser comuns a totes les possibles trajectòries dels electrons del mateix estat quàntic magnètic i de dues hipòtesis addicionals: que la curvatura escalar siga positiva (per tal d'evitar trajectòries geodèsiques que escapen a l'infinit) i que siga positiu el component energètic del tensor d'impulsió-energia corresponent a l'equació de camp d'Einstein, puix encara que aquesta és inaplicable als sistemes quàntics, modernes modificacions fan pensar que és una suposició plausible. Amb aquests condicionants emprenem la recerca de mètriques que complisquen les restriccions adés esmentades. Comencem amb dues mètriques senzilles que compleixen el, [ES] Esta tesis se dirige a investigar la aplicabilidad de la geometría lorentziana para representar el movimiento del electrón en átomos hidrogenoides según la teoría cuántica de de Broglie-Bohm (dBB). Parte de la constatación de que los electrones se comportan de manera diferente cuando forman parte de sistemas atómicos o cuando son no ligados. Mientras que estos, cuando describen trayectorias curvilíneas emiten energía, en los electrones ligados en átomos hidrogenoides según dBB describen trayectorias circulares de manera estacionaria, sin emisión energética. La anterior consideración nos sugiere la hipótesis de que los electrones ligados a átomos hidrogenoides se mueven en espacios curvos, donde sus trayectorias son geodésicas y por lo tanto sin aceleración ni emisión energética que implicarían inestabilidad de la materia. Utilizamos la geometría lorentziana y algunos conceptos de la Teoría de la Relatividad General de Einstein con carácter heurístico, para describir este espacio-tiempo. Establecemos una equivalencia a nivel diferencial mediante la tetravelocidad y utilizamos conectores de Levi-Civita, que unifican las geodésicas métricas y las afines. Llegamos así a la formulación de un teorema y algunos corolarios que afectan a los componentes de las métricas que satisfacen la anterior hipótesis. Estas métricas han de cumplir además la condición de ser comunes a todas las posibles trayectorias de los electrones del mismo estado cuántico magnético y de dos hipótesis adicionales: que la curvatura escalar sea positiva (para evitar trayectorias geodésicas que escapen al infinito y que sea positivo el componente energético del tensor de impulsión- energía correspondiente a la ecuación de campo de Einstein, porque aunque esta es inaplicable a los sistemas cuánticos, modernas modificaciones sugieren que es una suposición plausible. Con estos condicionantes emprendemos la búsqueda de métricas que cumplan las restricciones mencionadas. Empezamos con dos métricas sencil
- Published
- 2021