Diblík, Josef, Galewski, Marek, Růžičková, Miroslava, Korobko, Evgeniya, Diblík, Josef, Galewski, Marek, Růžičková, Miroslava, and Korobko, Evgeniya
V literatuře je často studována Emden--Fowlerova nelineární diferenciální rovnice druhého řádu $$ y'' \pm x^\alpha y^m = 0, $$ kde $\alpha$ a $m$ jsou konstanty. V disertační práci je analyzována diskrétní analogie Emden-Fowlerovy diferenciální rovnice $$ \Delta^2 u(k) \pm k^\alpha u^m(k) = 0, $$ kde $k\in \mathbb{N}(k_0):= \{k_0, k_0+1, ....\}$ je nezávislá proměnná, $k_0$ je celé číslo a $u \colon \mathbb{N}(k_0) \to \mathbb{R}$ je řešení. V této rovnici je $\Delta^2u(k)=\Delta(\Delta u(k))$, kde $\Delta u(k)$ je diference vpřed prvního řádu funkce $u(k)$, tj. $\Delta u(k) = u(k+1)-u(k)$ a $\Delta^2 (k)$ je její diference vpřed druhého řádu, tj. $\Delta^2u(k) = u(k+2)-2u(k+1)+u(k)$, a $\alpha$, $m$ jsou reálná čísla. Je diskutováno asymptotické chování řešení této rovnice a jsou stanoveny podmínky, garantující existence řešení s asymptotikou mocninného typu: $u(k) \sim {1}/{k^s}$, kde $s$ je vhodná konstanta. Je také zkoumána diskrétní analogie tzv. ``blow-up'' řešení (neohraničených řešení) známých v klasické teorii diferenciálních rovnic, tj. řešení pro která v některém bodě $x^*$ platí $\lim_{x \to x^*} y(x)= \infty$, kde $y(x)$ je řešení Emden-Fowlerovy diferenciální rovnice $$ y''(x) = y^s(x), $$ kde $s \ne 1$ je reálné číslo. Výsledky jsou ilustrovány příklady a porovnávány s výsledky doposud známými., In the literature a differential second--order nonlinear Emden--Fowler equation $$ y'' \pm x^\alpha y^m = 0, $$ where $\alpha$ and $m$ are constants, is often investigated. This thesis deals with a discrete equivalent of the second--order Emden-Fowler differential equation $$ \Delta^2 u(k) \pm k^\alpha u^m(k) = 0, $$ where $k\in \mathbb{N}(k_0):= \{k_0, k_0+1, ....\}$ is an independent variable, $k_0$ is an integer and $u \colon \mathbb{N}(k_0) \to \mathbb{R}$ is an unknown solution. In this equation, $\Delta^2u(k)=\Delta(\Delta u(k))$, $\Delta u(k)$ is the the first-order forward difference of $u(k)$, i.e., $\Delta u(k) = u(k+1)-u(k)$, and $\Delta^2 (k)$ is its second--order forward difference, i.e., $\Delta^2u(k) = u(k+2)-2u(k+1)+u(k)$, $\alpha$, $m$ are real numbers. The asymptotic behaviour of the solutions to this equation is discussed and the conditions are found such that there exists a power-type asymptotic: $u(k) \sim {1}/{k^s}$, where $s$ is some constant. We also discuss a discrete analogy of so-called ``blow-up'' solutions in the classical theory of differential equations, i.e., the solutions for which there exists a point $x^*$ such that $\lim_{x \to x^*} y(x) = \infty$, where $y(x)$ is a solution of the Emden-Fowler differential equation $$ y''(x) = y^s(x), $$ with $s \ne 1$ being a real number. The results obtained are compared to those already known and illustrated with examples.