1. Electrical properties of cometary dust particles derived from line shapes of TOF-SIMS spectra measured by the ROSETTA/COSIMA instrument
- Author
-
Hornung, K., Mellado, E. M., Paquette, J., Fray, N., Fischer, H., Stenzel, O., Baklouti, D., Merouane, S., Langevin, Y., Bardyn, A., Engrand, C., Cottin, H., Thirkell, L., Briois, C., Modica, P., Rynö, J., Silen, J., Schulz, R., Siljeström, Sandra, Lehto, H., Varmuza, K., Koch, A., Kissel, J., Hilchenbach, M., Hornung, K., Mellado, E. M., Paquette, J., Fray, N., Fischer, H., Stenzel, O., Baklouti, D., Merouane, S., Langevin, Y., Bardyn, A., Engrand, C., Cottin, H., Thirkell, L., Briois, C., Modica, P., Rynö, J., Silen, J., Schulz, R., Siljeström, Sandra, Lehto, H., Varmuza, K., Koch, A., Kissel, J., and Hilchenbach, M.
- Abstract
Between Aug. 2014 and Sept. 2016, while ESA's cornerstone mission Rosetta was operating in the vicinity of the nucleus and in the coma of comet 67P/Churyumov-Gerasimenko, the COSIMA instrument collected a large number of dust particles with diameters up to a millimeter. Positive or negative ions were detected by a time-of-flight secondary ion mass spectrometer (TOF-SIMS) and the composition of selected particles was deduced. Many of the negative ion mass spectra show, besides mass peaks at the correct position, an additional, extended contribution at the lower mass side caused by partial charging of the dust. This effect, usually avoided in SIMS applications, can in our case be used to obtain information on the electrical properties of the collected cometary dust particles, such as the specific resistivity (ρr>1.2⋅1010Ωm) and the real part of the relative electrical permittivity (εr<1.2). From these values a lower limit for the porosity is derived (P>0.8)., Funding details: Austrian Science Fund, FWF, P26871-N20; Funding details: Centre National d’Etudes Spatiales, CNES; Funding details: Deutsches Zentrum für Luft- und Raumfahrt, DLR, 50 QP 1801; Funding text 1: COSIMA was built by a consortium led by the Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany in collaboration with Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Orléans, France, Institut d’Astrophysique Spatiale, CNRS/Université Paris Sud, Orsay, France, Finnish Meteorological Institute, Helsinki, Finland, Universität Wuppertal, Wuppertal, Germany, von Hoerner und Sulger GmbH, Schwetzingen, Germany, Universität der Bundeswehr München, Neubiberg, Germany, Institut für Physik, Forschungszentrum Seibersdorf, Seibersdorf, Austria, Institut für Weltraumforschung, Österreichische Akademie der Wissenschaften, Graz, Austria and is lead by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany. The support of the national funding agencies of Germany ( DLR , grant 50 QP 1801 ), France ( CNES ), Austria ( FWF , grant P26871-N20 ), Finland and the ESA Technical Directorate is gratefully acknowledged. We thank the Rosetta Science Ground Segment at ESAC, the Rosetta Mission Operations Centre at ESOC and the Rosetta Project at ESTEC for their outstanding work enabling the science return of the Rosetta Mission. Appendix A
- Published
- 2019
- Full Text
- View/download PDF