1. A Cooperative Evolution for QoS-driven IoT Service Composition
- Author
-
Jin Liu, Yuxi Chen, Xu Chen, Jianli Ding, Kaushik Roy Chowdhury, Qiping Hu, Shenling Wang, Jin Liu, Yuxi Chen, Xu Chen, Jianli Ding, Kaushik Roy Chowdhury, Qiping Hu, and Shenling Wang
- Abstract
To facilitate the automation process in the Internet of Things, the research issue of distinguishing prospective services out of many “similar” services, and identifying needed services w.r.t the criteria of Quality of Service (QoS), becomes very important. To address this aim, we propose heuristic optimization, as a robust and efficient approach for solving complex real world problems. Accordingly, this paper devises a cooperative evolution approach for service composition under the restrictions of QoS. A series of effective strategies are presented for this problem, which include an enhanced local best first strategy and a global best strategy that introduces perturbations. Simulation traces collected from real measurements are used for evaluating the proposed algorithms under different service composition scales that indicate that the proposed cooperative evolution approach conducts highly efficient search with stability and rapid convergence. The proposed algorithm also makes a well-designed trade-off between the population diversity and the selection pressure when the service compositions occur on a large scale., Kako bi se automatizirali procesi u internetu stvati, nužno je rezlikovati bitne usluge u moru sličnih kao i identificirati potrebne usluge u pogledu kvalitete usluge (QoS). Kako bi doskočili ovome problemu prdlaže se heuristička optimizacija kao robustan i efikasan način rješavajne kompleksnih problema. Nadalje, u članku je predložen postupak kooperativne evolucije za slaganje usluga uz ograničenja u pogledu kvalutete usluge. Predstavljen je niz efektivnih strategija za spomenuti problem uključujući strategije najboljeg prvog i najboljeg globalnog koje unose perturbacije u polazni problem. Simulacijski rezultati kao i stvarni podatci su korišteni u svrhu evaluacije prodloženog algoritma kako bi se osigurala efikasna pretraga uz stabilnost i brzu konvergenciju. Predloženi algoritam tako.er vodi računa o odnosu izme.u različitosti populacije i selekcijskog pritiska kada je potrebno osigurati slaganje usluga na velikoj skali.
- Published
- 2013