5 results on '"Joseph, J.S."'
Search Results
2. Two RuIILinkage Isomers with Distinctly Different Charge Transfer Photophysics
- Author
-
Tisaun, Jérôme, Laramée-Milette, Baptiste, Beckwith, Joseph J.S., Bierwagen, Jakob, Hanan, Garry G.S., Reber, Christian, Hauser, Andreas, Moucheron, Cécile, Tisaun, Jérôme, Laramée-Milette, Baptiste, Beckwith, Joseph J.S., Bierwagen, Jakob, Hanan, Garry G.S., Reber, Christian, Hauser, Andreas, and Moucheron, Cécile
- Abstract
The ligand PHEHAT (PHEHAT = 1,10-phenanthrolino[5,6-b]1,4,5,8,9,12-hexaazatriphenylene) presents a structural asymmetry that has a dramatic influence on the photophysical properties depending on the chelation site of the metal ion in the linkage isomers. While [RuII(phen)2HATPHE]2+ behaves classically, like [RuII(bpy)3]2+, [RuII(phen)2PHEHAT]2+ exhibits an unusual behavior. It appears that this complex has two 3MLCT bright states, the lower one being weakly emissive or nonemissive depending on the solvent and temperature. Different photophysical techniques involving a wide range of various temperatures and timescales are essential to analyze this difference. A full photophysical scheme is proposed based on experimental data and density functional theory calculations. While previous studies focused on high temperatures and longer timescale emission, we explore the complexes at very low temperatures and very short times in order to obtain a more complete picture of the intriguing photophysical behavior of these complexes., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2021
3. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions
- Author
-
Seidel, S.A., Dijkman, P.M., Lea, W.A., Bogaart, G. van den, Jerabek-Willemsen, M., Lazic, A., Joseph, J.S., Srinivasan, P., Baaske, P., Simeonov, A., Katritch, I., Melo, F.A., Ladbury, J.E., Schreiber, G., Watts, A., Braun, D., Duhr, S., Seidel, S.A., Dijkman, P.M., Lea, W.A., Bogaart, G. van den, Jerabek-Willemsen, M., Lazic, A., Joseph, J.S., Srinivasan, P., Baaske, P., Simeonov, A., Katritch, I., Melo, F.A., Ladbury, J.E., Schreiber, G., Watts, A., Braun, D., and Duhr, S.
- Abstract
Contains fulltext : 118804.pdf (publisher's version ) (Open Access), Microscale thermophoresis (MST) allows for quantitative analysis of protein interactions in free solution and with low sample consumption. The technique is based on thermophoresis, the directed motion of molecules in temperature gradients. Thermophoresis is highly sensitive to all types of binding-induced changes of molecular properties, be it in size, charge, hydration shell or conformation. In an all-optical approach, an infrared laser is used for local heating, and molecule mobility in the temperature gradient is analyzed via fluorescence. In standard MST one binding partner is fluorescently labeled. However, MST can also be performed label-free by exploiting intrinsic protein UV-fluorescence. Despite the high molecular weight ratio, the interaction of small molecules and peptides with proteins is readily accessible by MST. Furthermore, MST assays are highly adaptable to fit to the diverse requirements of different biomolecules, such as membrane proteins to be stabilized in solution. The type of buffer and additives can be chosen freely. Measuring is even possible in complex bioliquids like cell lysate allowing close to in vivo conditions without sample purification. Binding modes that are quantifiable via MST include dimerization, cooperativity and competition. Thus, its flexibility in assay design qualifies MST for analysis of biomolecular interactions in complex experimental settings, which we herein demonstrate by addressing typically challenging types of binding events from various fields of life science.
- Published
- 2013
4. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions
- Author
-
Seidel, S.A., Dijkman, P.M., Lea, W.A., Bogaart, G. van den, Jerabek-Willemsen, M., Lazic, A., Joseph, J.S., Srinivasan, P., Baaske, P., Simeonov, A., Katritch, I., Melo, F.A., Ladbury, J.E., Schreiber, G., Watts, A., Braun, D., Duhr, S., Seidel, S.A., Dijkman, P.M., Lea, W.A., Bogaart, G. van den, Jerabek-Willemsen, M., Lazic, A., Joseph, J.S., Srinivasan, P., Baaske, P., Simeonov, A., Katritch, I., Melo, F.A., Ladbury, J.E., Schreiber, G., Watts, A., Braun, D., and Duhr, S.
- Abstract
Contains fulltext : 118804.pdf (publisher's version ) (Open Access), Microscale thermophoresis (MST) allows for quantitative analysis of protein interactions in free solution and with low sample consumption. The technique is based on thermophoresis, the directed motion of molecules in temperature gradients. Thermophoresis is highly sensitive to all types of binding-induced changes of molecular properties, be it in size, charge, hydration shell or conformation. In an all-optical approach, an infrared laser is used for local heating, and molecule mobility in the temperature gradient is analyzed via fluorescence. In standard MST one binding partner is fluorescently labeled. However, MST can also be performed label-free by exploiting intrinsic protein UV-fluorescence. Despite the high molecular weight ratio, the interaction of small molecules and peptides with proteins is readily accessible by MST. Furthermore, MST assays are highly adaptable to fit to the diverse requirements of different biomolecules, such as membrane proteins to be stabilized in solution. The type of buffer and additives can be chosen freely. Measuring is even possible in complex bioliquids like cell lysate allowing close to in vivo conditions without sample purification. Binding modes that are quantifiable via MST include dimerization, cooperativity and competition. Thus, its flexibility in assay design qualifies MST for analysis of biomolecular interactions in complex experimental settings, which we herein demonstrate by addressing typically challenging types of binding events from various fields of life science.
- Published
- 2013
5. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions
- Author
-
Seidel, S.A., Dijkman, P.M., Lea, W.A., Bogaart, G. van den, Jerabek-Willemsen, M., Lazic, A., Joseph, J.S., Srinivasan, P., Baaske, P., Simeonov, A., Katritch, I., Melo, F.A., Ladbury, J.E., Schreiber, G., Watts, A., Braun, D., Duhr, S., Seidel, S.A., Dijkman, P.M., Lea, W.A., Bogaart, G. van den, Jerabek-Willemsen, M., Lazic, A., Joseph, J.S., Srinivasan, P., Baaske, P., Simeonov, A., Katritch, I., Melo, F.A., Ladbury, J.E., Schreiber, G., Watts, A., Braun, D., and Duhr, S.
- Abstract
Contains fulltext : 118804.pdf (publisher's version ) (Open Access), Microscale thermophoresis (MST) allows for quantitative analysis of protein interactions in free solution and with low sample consumption. The technique is based on thermophoresis, the directed motion of molecules in temperature gradients. Thermophoresis is highly sensitive to all types of binding-induced changes of molecular properties, be it in size, charge, hydration shell or conformation. In an all-optical approach, an infrared laser is used for local heating, and molecule mobility in the temperature gradient is analyzed via fluorescence. In standard MST one binding partner is fluorescently labeled. However, MST can also be performed label-free by exploiting intrinsic protein UV-fluorescence. Despite the high molecular weight ratio, the interaction of small molecules and peptides with proteins is readily accessible by MST. Furthermore, MST assays are highly adaptable to fit to the diverse requirements of different biomolecules, such as membrane proteins to be stabilized in solution. The type of buffer and additives can be chosen freely. Measuring is even possible in complex bioliquids like cell lysate allowing close to in vivo conditions without sample purification. Binding modes that are quantifiable via MST include dimerization, cooperativity and competition. Thus, its flexibility in assay design qualifies MST for analysis of biomolecular interactions in complex experimental settings, which we herein demonstrate by addressing typically challenging types of binding events from various fields of life science.
- Published
- 2013
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.