Lefebvre, Roch, Gournay, Philippe, Lotfidereshgi, Reza, Lefebvre, Roch, Gournay, Philippe, and Lotfidereshgi, Reza
Depuis les années 80, les codecs vocaux reposent sur des stratégies de codage à court terme qui fonctionnent au niveau de la sous-trame ou de la trame (généralement 5 à 20 ms). Les chercheurs ont essentiellement ajusté et combiné un nombre limité de technologies disponibles (transformation, prédiction linéaire, quantification) et de stratégies (suivi de forme d'onde, mise en forme du bruit) pour construire des architectures de codage de plus en plus complexes. Dans cette thèse, plutôt que de s'appuyer sur des stratégies de codage à court terme, nous développons un cadre alternatif pour la compression de la parole en codant les attributs de la parole qui sont des caractéristiques perceptuellement importantes des signaux vocaux. Afin d'atteindre cet objectif, nous résolvons trois problèmes de complexité croissante, à savoir la classification, la prédiction et l'apprentissage des représentations. La classification est un élément courant dans les conceptions de codecs modernes. Dans un premier temps, nous concevons un classifieur pour identifier les émotions, qui sont parmi les attributs à long terme les plus complexes de la parole. Dans une deuxième étape, nous concevons un prédicteur d'échantillon de parole, qui est un autre élément commun dans les conceptions de codecs modernes, pour mettre en évidence les avantages du traitement du signal de parole à long terme et non linéaire. Ensuite, nous explorons les variables latentes, un espace de représentations de la parole, pour coder les attributs de la parole à court et à long terme. Enfin, nous proposons un réseau décodeur pour synthétiser les signaux de parole à partir de ces représentations, ce qui constitue notre dernière étape vers la construction d'une méthode complète de compression de la parole basée sur l'apprentissage automatique de bout en bout. Bien que chaque étape de développement proposée dans cette thèse puisse faire partie d'un codec à elle seule, chaque étape fournit également des informations et une ba, Since the 80s, speech codecs have relied on short-term coding strategies that operate at the subframe or frame level (typically 5 to 20ms). Researchers essentially adjusted and combined a limited number of available technologies (transform, linear prediction, quantization) and strategies (waveform matching, noise shaping) to build increasingly complex coding architectures. In this thesis, rather than relying on short-term coding strategies, we develop an alternative framework for speech compression by encoding speech attributes that are perceptually important characteristics of speech signals. In order to achieve this objective, we solve three problems of increasing complexity, namely classification, prediction and representation learning. Classification is a common element in modern codec designs. In a first step, we design a classifier to identify emotions, which are among the most complex long-term speech attributes. In a second step, we design a speech sample predictor, which is another common element in modern codec designs, to highlight the benefits of long-term and non-linear speech signal processing. Then, we explore latent variables, a space of speech representations, to encode both short-term and long-term speech attributes. Lastly, we propose a decoder network to synthesize speech signals from these representations, which constitutes our final step towards building a complete, end-to-end machine-learning based speech compression method. The first two steps, classification and prediction, provide new tools that could replace and improve elements of existing codecs. In the first step, we use a combination of source-filter model and liquid state machine (LSM), to demonstrate that features related to emotions can be easily extracted and classified using a simple classifier. In the second step, a single end-to-end network using long short-term memory (LSTM) is shown to produce speech frames with high subjective quality for packet loss concealment (PL