1. Polynomial realizations of some combinatorial Hopf algebras
- Author
-
Jean-Christophe Novelli, Loïc Foissy, Jean-Yves Thibon, Laboratoire de Mathématiques de Reims (LMR), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique Gaspard-Monge (LIGM), and Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM)
- Subjects
Hopf algebras of decorated rooted trees ,Pure mathematics ,Polynomial ,Algebra and Number Theory ,Noncommutative ring ,Mathematics::Operator Algebras ,Mathematics::Rings and Algebras ,free quasi-symmetric functions ,Hopf algebra ,Mathematics::Quantum Algebra ,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] ,FOS: Mathematics ,Mathematics - Combinatorics ,Combinatorics (math.CO) ,Geometry and Topology ,parking functions ,Algebra over a field ,05C05, 16W30 ,Mathematical Physics ,Quotient ,Mathematics - Abstract
We construct explicit polynomial realizations of some combinatorial Hopf algebras based on various kind of trees or forests, and some more general classes of graphs, ranging from the Connes-Kreimer algebra to an algebra of labelled forests isomorphic to the Hopf algebra of parking functions, and to a new noncommutative algebra based on endofunctions admitting many interesting subalgebras and quotients., 20 pages
- Published
- 2014
- Full Text
- View/download PDF