8 results on '"Adrián Pandal"'
Search Results
2. Aerodynamic performance of vawt airfoils: comparison between wind tunnel testing using a new three-component strain gauge balance and cfd modelling
- Author
-
Luis Santamaría, Mónica Galdo Vega, Adrián Pandal, José González Pérez, Sandra Velarde-Suárez, and Jesús Manuel Fernández Oro
- Subjects
Control and Optimization ,Renewable Energy, Sustainability and the Environment ,airfoil testing ,strain gauge balance ,wind tunnel ,GEKO turbulence model ,vertical axis wind turbine ,VAWT ,Energy Engineering and Power Technology ,Building and Construction ,Electrical and Electronic Engineering ,Engineering (miscellaneous) ,Energy (miscellaneous) - Abstract
Vertical axis wind turbines are an emerging and in-development wind energy technology which are characterized by their complicated aerodynamics. Detached flow conditions, which are typically developed at operational tip speed ratios, demand a rigorous characterization of the airfoils for an accurate prediction of the turbine performance. In this work, a custom-built, three-component external strain gauge balance, specifically developed for airfoil testing, is validated. The physical reasons responsible for discrepancies with reference data are also analyzed. Two- and three-dimensional flat plates, as well as the DU06-W-200 airfoil, are tested in a wind tunnel. Lift and drag coefficients and pitching moments are obtained for a wide angular range at Re = 200,000. The results are compared with data from the bibliography and CFD simulations, performed with the recently developed GEKO (generalized k-omega) turbulence model, achieving remarkable agreement. Instantaneous forces are also analyzed with both experimental and CFD techniques, providing interesting results of the unsteady fluid dynamics. Finally, critical factors affecting the measurements are identified and enhancements are proposed for future works. In summary, a thorough evaluation of this new balance design is provided, showing its valuable potential for VAWT applications.
- Published
- 2022
3. Computational Assessment of Biomass Dust Explosions in the 20L Sphere
- Author
-
Alain Islas, Andrés Rodríguez Fernández, Covadonga Betegón, Emilio Martínez-Pañeda, and Adrián Pandal
- Subjects
FOS: Computer and information sciences ,Technology ,Engineering, Chemical ,IGNITION DELAY ,PULVERIZED BIOMASS ,Environmental Engineering ,General Chemical Engineering ,physics.chem-ph ,0904 Chemical Engineering ,FOS: Physical sciences ,Dust explosions ,Computational Engineering, Finance, and Science (cs.CE) ,Engineering ,RADIATIVE-TRANSFER ,HYBRID MIXTURES ,DEVOLATILIZATION KINETICS ,0102 Applied Mathematics ,Physics - Chemical Physics ,OpenFOAM ,Environmental Chemistry ,Biomass ,Safety, Risk, Reliability and Quality ,Computer Science - Computational Engineering, Finance, and Science ,CFD SIMULATIONS ,Chemical Physics (physics.chem-ph) ,cs.CE ,Science & Technology ,Strategic, Defence & Security Studies ,COAL-DUST ,DEFLAGRATION INDEX ,Engineering, Environmental ,Fluid Dynamics (physics.flu-dyn) ,0914 Resources Engineering and Extractive Metallurgy ,Physics - Fluid Dynamics ,Chemical Engineering ,PARTICLE-SIZE ,physics.flu-dyn ,OXY-FUEL COMBUSTION ,0911 Maritime Engineering ,CFD - Abstract
Determination of the explosion severity parameters of biomass is crucial for the safety management and dust explosion risk assessment of biomass-processing industries. These are commonly determined following experimental tests in the 20L sphere according to the international standards. Recently, CFD simulations have emerged as a reliable alternative to predict the explosion behavior with good accuracy and reduced labor and capital. In this work, numerical simulations of biomass dust explosions are conducted with the open-source CFD code OpenFOAM. The multi-phase (gas-solid) flow is treated in an Eulerian-Lagrangian framework, using a two-way coupling regime and considering the reactions of biomass conversion (moisture evaporation, devolatilization, and char oxidation), the combustion of volatile gases, and convective and radiative heat transfer. The model is validated with pressure-time and concentration-dependent experimental measurements of two biomass samples. Results suggest that the characteristics of the cold-flow (ı.e., turbulence levels, actual dust concentration, spatial distribution of the dust cloud, and turbophoresis effect) govern the course of the explosion process, and depend strongly on particle size, dust concentration, and ignition delay time effects. These findings may be relevant in the design of better dust explosion testing devices and to the reexamination of the guidelines for the operation of the experiment. Finally, a thorough discussion on the explosion pressures, degree of biomass conversion, flame temperature, flame propagation patterns, and the dust agglomeration effect is presented.
- Published
- 2022
- Full Text
- View/download PDF
4. Performance evaluation of an airfoil under ice accretion using CFD simulations
- Author
-
Daniel Bodenlle-Toral, Pedro García-Regodeseves, and Adrián Pandal-Blanco
- Subjects
History ,Computer Science Applications ,Education - Abstract
The profiles used in wind turbine blades have a great effect on aerodynamic behavior. The incorporation in engineering methods of the three-dimensional and rotation effects obtained through numerical simulations has allowed to substantially improve the design of the blades. A further advance in the improvement of the models is the modification of the surface state of the profile due to environmental effects. The presence of erosion, dirt, or snow on the leading edge reduces the aerodynamic behavior of the profiles. Therefore, incorporating its effects would improve predictions. However, the implementation of these effects in numerical models is complex. In this work, only the effect of the ice/snow accretion will be taken into account. The study is made using the NREL PHASE VI experimental horizontal-axis turbine with the S809 profile. The BEM theory is applied to conduct accurate 2D numerical simulations firstly, of a clean profile (unmodified) and afterwards of accreted profile. The latter is constructed by the modification of the profile in advance, following indications of the Icing ANSYS Fluent tool. Simulations are conducted under a RANS numerical approach through an SST k-ω model, which properly predicts boundary layer behavior. CFD results are evaluated at different sections of the profile and compared against predictions from other authors in terms of aerodynamic coefficients. The simulations consistently predict an increase in the drag coefficient (CD +33%), and a decrease in the lift coefficient (CL -9%). The presence of ice accretion affects the airfoil performance along the whole blade span, being slightly more pronounced towards the root of the blade. This work presents a new engineering methodology able to accurately predict airfoil performance under ice accretion at a reduced computational cost.
- Published
- 2022
- Full Text
- View/download PDF
5. In silico prototype of a human lung with a single airway to predict particle deposition
- Author
-
Raúl Barrio‐Perotti, Eduardo Blanco-Marigorta, Ana Fernandez-Tena, and Adrián Pandal-Blanco
- Subjects
Work (thermodynamics) ,Computer science ,business.industry ,Applied Mathematics ,Flow (psychology) ,Biomedical Engineering ,Mechanics ,respiratory system ,Radiation ,Computational fluid dynamics ,Volumetric flow rate ,Trachea ,Computational Theory and Mathematics ,Modeling and Simulation ,Administration, Inhalation ,Hydrodynamics ,Humans ,Particle ,Larynx ,Airway ,business ,Lung ,Molecular Biology ,Software ,Particle deposition - Abstract
Background Experimental analyses of the flow of drug particles inside the human lung usually require that the patient be exposed to radiation and also of expensive equipment that often lack of enough accuracy. Numerical calculations based on CFD (computational fluid dynamics) have been proven to be a valuable tool to analyze flows in diverse applications. Methods The complexity of the human lung disallows running calculations on complete lung models due to the large number of cells that would be required. In this work, using a proprietary methodology, particle deposition in the lung is simulated by reducing its multiple branches to a single path. Results The tested flow rates were 18, 30, and 75 L min-1 , which are equivalent to different respiratory rates varying from light activity to heavy exercise. Most of the particles are accumulated in the upper airways, mainly at the mouth and also at the confluence of the larynx and the trachea (epiglottis), while the remaining particles travel across the lung. The reported procedure allowed simulating the operation of the entire lung by means of a single individual path. Conclusions The obtained calculations are in good agreement with the experimental results found in the technical literature, thus showing that the model can provide a realistic description of the lung operation, while avoiding high computational costs. Moreover, the calculations suggest that particle sizes above 15 μm and inspiratory flows higher than 30 L min-1 must be avoided in order to allow drug particles to reach the lower airways.
- Published
- 2020
- Full Text
- View/download PDF
6. Construction of a hybrid lung model by combining a real geometry of the upper airways and an idealized geometry of the lower airways
- Author
-
Ana Fernandez-Tena, C. Ferrera, R. Agujetas, R. Barrio-Perotti, Adrián Pandal-Blanco, and D.K. Walters
- Subjects
Spirometry ,Chronic bronchitis ,Computer science ,Pulmonary emphysema ,Airflow ,Inhaled drug ,Health Informatics ,Geometry ,Computational fluid dynamics ,Models, Biological ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,DICOM ,0302 clinical medicine ,Component (UML) ,medicine ,Humans ,Computer Simulation ,Respiratory system ,Particle Size ,Lung ,medicine.diagnostic_test ,business.industry ,respiratory system ,respiratory tract diseases ,Computer Science Applications ,Aerosol ,Europe ,Trachea ,medicine.anatomical_structure ,Hydrodynamics ,business ,030217 neurology & neurosurgery ,Software - Abstract
Background and Objective Health care costs represent a substantial an increasing percentage of global expenditures. One key component is treatment of respiratory diseases, which account for one in twelve deaths in Europe. Computational simulations of lung airflow have potential to provide considerable cost reduction and improved outcomes. Such simulations require accurate in silico modeling of the lung airway. The geometry of the lung is extremely complex and for this reason very simple morphologies have primarily been used to date. The objective of this work is to develop an effective methodology for the creation of hybrid pulmonary geometries combining patient-specific models obtained from CT images and idealized pulmonary models, for the purpose of carrying out experimental and numerical studies on aerosol/particle transport and deposition in inhaled drug delivery. Methods For the construction of the hybrid numerical model, lung images obtained from computed tomography were exported to the DICOM format to be treated with a commercial software to build the patient-specific part of the model. At the distal terminus of each airway of this portion of the model, an idealization of a single airway path is connected, extending to the sixteenth generation. Because these two parts have different endings, it is necessary to create an intermediate solid to link them together. Physically realistic treatment of truncated airway boundaries in the model was accomplished by mapping of the flow velocity distribution from corresponding conducting airway segments. Results The model was verified using two sets of simulations, steady inspiration/expiration and transient simulation of forced spirometry. The results showed that the hybrid model is capable of providing a realistic description of air flow dynamics in the lung while substantially reducing computational costs relative to models of the full airway tree. Conclusions The model development outlined here represents an important step toward computational simulation of lung dynamics for patient-specific applications. Further research work may consist of investigating specific diseases, such as chronic bronchitis and pulmonary emphysema, as well as the study of the deposition of pollutants or drugs in the airways.
- Published
- 2020
7. Implementation of a specific boundary condition for a simplified symmetric single-path CFD lung model with OpenFOAM
- Author
-
Ana Fernandez-Tena, R Agujetas-Ortiz, R. Barrio-Perotti, and Adrián Pandal-Blanco
- Subjects
Source code ,Computer science ,media_common.quotation_subject ,0206 medical engineering ,02 engineering and technology ,Computational fluid dynamics ,Models, Biological ,Computational science ,Software ,Code (cryptography) ,Pressure ,Boundary value problem ,Lung ,media_common ,business.industry ,Mechanical Engineering ,Process (computing) ,Reproducibility of Results ,Solver ,Grid ,020601 biomedical engineering ,Modeling and Simulation ,Hydrodynamics ,business ,Tomography, X-Ray Computed ,Biotechnology - Abstract
CFD modeling research about the lung airflow with a complete resolution and an adequate accuracy at all scales requires a great amount of computational resources due to the vast number of necessary grid elements. As a result, a common practice is to conduct simplifications that allows to manage it with ordinary computational power. In this study, the implementation of a special boundary condition in order to develop a simplified single conductive lung airway model, which exactly represents the effect of the removed airways, is presented. The boundary condition is programmed in the open-source software OpenFOAM®, and the developed source code is presented in the proper syntax. After this description, modeling accuracy is evaluated under different flow rate conditions typical of human breathing processes, including both inspiration and expiration movements. Afterward, a validation process is conducted using results of a Weibel's model (0-4 generations) simulation for a medium flow rate of 50 L/min. Finally, a comparison against the proposed boundary condition implemented in the commercial code ANSYS Fluent is made, which highlights the benefits of using the free code toolbox. The specific contribution of this paper will be to show that OpenFOAM® developed model can perform even better than other commercial codes due to a precise implementation and coupling of the default solver with the in-house functions by virtue of the open-source nature of the code.
- Published
- 2019
8. Implementation and Development of an Eulerian Spray Model for CFD simulations of diesel Sprays
- Author
-
Adrián Pandal Blanco
- Subjects
Physics ,Near-field ,Diesel spray ,Evaporation ,MAQUINAS Y MOTORES TERMICOS ,OpenFOAM ,Eulerian modeling ,CFD ,Humanities ,Cartography ,Atomization - Abstract
[EN] The main objective of this work is the modeling of diesel sprays under engine conditions, including the atomization, transport and evaporation processes pivotal in the diesel spray formation and its development. For this purpose, an Eulerian single fluid model, embedded in a RANS environment, is implemented in the CFD platform OpenFOAM. The modeling approach implemented here is based on the ⅀-Y model. The model is founded on the assumption of flow scales separation. In actual injection systems, it can be assumed that the flow exiting the nozzle is operating at large Reynolds and Weber numbers and thus, it is possible to assume a separation of features such as mass transport (large scales) from the atomization process occurring at smaller scales. The liquid/gas mixture is treated as a pseudo-fluid with variable density and which flows with a single velocity field. Moreover, the mean geometry of the liquid structures can be characterized by modeling the mean surface area of the liquid-gas interphase per unit of volume. Additionally, an evaporation model has been developed around the particular characteristics of the current engine technologies. This means that vaporization process is limited by fuel-air mixing rate and fuel droplets evaporate as long as there is enough air for them to heat up and vaporize. Consequently, the evaporation model is based on the Locally Homogeneous Flow (LHF) approach. Under the assumption of an adiabatic mixing, in the liquid/vapor region, the spray is supposed to have a trend towards adiabatic saturation conditions and to determine this equilibrium between phases Raoult's ideal law is considered. Finally, the spray model is coupled with an advanced combustion model based on approximated diffusion flames (ADF), which reduces the computational effort especially for complex fuels and is a natural step for modeling diesel sprays. First, the model is applied to a basic external flow case under non-vaporizing conditions, extremely convenient due to both the experimental database available and the symmetric layout which allows important simplification of the modeling effort. Good agreement between computational results and experimental data is observed, which encourages its application to a more complex configuration. Secondly, the model is applied to the "Spray A" from the Engine Combustion Network (ECN), under non-vaporizing conditions, in order to reproduce the internal structure of diesel sprays as well as to produce accurate predictions of SMD droplets sizes. Finally, vaporizing "Spray A" studies are conducted together with the baseline reacting condition of this database. The calculated spray penetration, liquid length, spray velocities, ignition delay and lift-off length are compared with experimental data and analysed in detail., [ES] El objetivo principal de este trabajo es el modelado de chorros diésel en condiciones de motor, incluyendo los fenómenos de atomización, transporte y evaporación fundamentales en la formación y desarrollo del chorro. Para este fin, se implementa un modelo de spray euleriano de tipo monofluido en un entorno RANS en la plataforma CFD OpenFOAM. El enfoque de modelado aplicado aquí sigue la idea de un modelo del tipo ⅀-Y. El modelo se fundamenta en la hipótesis de separación de escalas del flujo. En los sistemas de inyección actuales, es posible asumir que el flujo que sale de la tobera opera a altos números de Reynolds y Webber y por tanto, es posible considerar la independencia de fenómenos como el transporte de masa (grandes escalas del flujo) de los procesos de atomización que ocurren a escalas menores. La mezcla líquido/gas se trata como un pseudo-fluido con densidad variable y que fluye según un único campo de velocidad. Además, la geometría promedio de las estructuras de líquido se puede caracterizar mediante el modelado de la superficie de la interfase líquido/gas por unidad de volumen. Completando el modelo de chorro, se ha desarrollado un modelo de evaporación alrededor de las características particulares de las tecnologías actuales de los motores. Esto supone que el proceso de evaporación está controlado por mezcla aire-combustible y las gotas de combustible se evaporan siempre que exista suficiente aire para calentarlas y evaporarlas. Debido a esto, el modelo de evaporación implementado está basado en el enfoque de Flujos Localmente Homogéneos (LHF). Considerando una mezcla adiabática, en la región líquido/vapor, se supone que el chorro tiende a las condiciones adiabáticas de saturación y para determinar este equilibrio entre fases, se utiliza la ley ideal de Raoult. Finalmente, el modelo de chorro se acopla con un modelo avanzado de combustión basado en llamas de difusión aproximadas (ADF), que reduce el coste computacional especialmente para combustibles complejos y supone el paso lógico en el desarrollo del modelo para simular chorros diesel. En primer lugar, el modelo se aplica al cálculo de un caso básico de flujo externo no evaporativo, muy adecuado tanto por la extensa base de datos experimentales disponible como por la simetría geométrica que presenta, permitiendo una importante simplificación de la simulación. Los resultados obtenidos presentan un buen acuerdo con los experimentos, lo cual estimula su aplicación en configuraciones más complejas. En segundo lugar, el modelo se aplica al cálculo del "Spray A" del Engine Combustion Network (ECN), no evaporativo, para reproducir la estructura interna del chorro diesel así como predecir tamaños de gota (SMD) de forma precisa. Finalmente, se realizan estudios evaporativos del "Spray A" junto con la condición nominal reactiva de esta base de datos. La penetración de vapor, la longitud líquida, velocidad, el tiempo de retraso y la longitud de despegue de llama calculados se comparan con los datos experimentales y se analizan en detalle., [CA] L'objectiu principal d'aquest treball és el modelatge de dolls dièsel en condicions de motor, incloent els fenòmens d'atomització, transport i evaporació fonamentals en la formació i desenvolupament del doll. Amb aquesta finalitat, s'implementa un model de doll eulerià de tipus monofluid en un entorn RANS a la plataforma CFD OpenFOAM. L'enfocament de modelatge aplicat ací segueix la idea d'un model del tipus ⅀-Y. El model es fonamenta en la hipòtesi de separació d'escales del flux. En els sistemes d'injecció actuals, és possible assumir que el flux que surt de la tovera opera a alts nombres de Reynolds i Webber, i per tant és possible considerar la independència de fenòmens com el transport de massa (grans escales del flux) dels processos d'atomització que ocorren a escales menors. La mescla líquid / gas es tracta com un pseudo-fluid amb densitat variable i que flueix segons un únic camp de velocitat. A més, la geometria mitjana de les estructures de líquid es pot caracteritzar mitjançant el modelatge de la superfície de la interfase líquid / gas per unitat de volum. Completant el model, s'ha desenvolupat un model d'evaporació al voltant de les característiques particulars de les tecnologies actuals dels motors. Això suposa que el procés d'evaporació està controlat per la mescla aire-combustible i les gotes de combustible s'evaporen sempre que hi hagi suficient aire per escalfar i evaporar. A causa d'això, el model d'evaporació implementat està basat en el plantejament de fluxos Localment Homogenis (LHF). Considerant una mescla adiabàtica, a la regió líquid / vapor, se suposa que el doll tendeix a les condicions adiabàtiques de saturació i per determinar aquest equilibri entre fases, s'utilitza la llei ideal de Raoult. Finalment, el model de doll s'acobla amb un model avançat de combustió basat en flamelets de difusió aproximades (ADF), que redueix el cost computacional especialment per a combustibles complexos i suposa el pas lògic en el desenvolupament del model per simular dolls dièsel. En primer lloc, el model s'aplica al càlcul d'un cas bàsic de flux extern no evaporatiu, molt adequat tant per l'extensa base de dades experimentals disponible com per la simetria geomètrica que presenta, permetent una important simplificació de la simulació. Els resultats obtinguts presenten un bon acord amb els experiments, la qual cosa estimula la seva aplicació en configuracions més complexes. En segon lloc, el model s'aplica al càlcul del "Spray A" no evaporatiu de la xarxa Engine Combustion Network (ECN), per reproduir l'estructura interna del doll dièsel així com predir mides de gota (SMD) de forma precisa. Finalment, es realitzen estudis evaporatius del "Spray A" juntament amb la condició nominal reactiva d'aquesta base de dades. La penetració de vapor, la longitud líquida, velocitat, el temps de retard i la longitud d'enlairament de flama calculats es comparen amb les dades experimentals i s'analitzen en detall.
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.