1. Environmental parameters as a critical factor in understanding mosquito population
- Author
-
Anastasia Angelou, Sandra Gewehr, Spiros Mourelatos, and Ioannis Kioutsioukis
- Abstract
The transmission of West Nile Virus is known to be affected by multiple factors related to the behavior and interactions between reservoir (birds), vector (Culex-mosquitos), and hosts (humans). Environmental parameters can play a critical role in understanding WNV epidemiology. The aim of this research was to determine the association of various climatic factors with the Culex mosquito abundance in Greece during the period 2011-2022. Climate data were acquired from ERA5 (European Centre for Medium-Range Weather Forecasts), while Culex abundance data were obtained through the mosquito surveillance network of ECODEVELOPMENT S.A, who hold the biggest mosquito surveillance network in Greece. The research was conducted at the municipality level. Culex abundance depends in a nonlinear fashion from temperature (Figure 1). The spread of the measurements indicates however there are other factors that affect the abundance of mosquitoes.Figure 1 Scatter plot of air temperature VS Culex abundance in a municipality (Delta) with relatively sizeable mosquito population.Correlation heatmaps were used as a tool to visualize the correlation of vector abundance and average monthly temperature up to 2 months before at several municipalities in the Region of Central Macedonia. The correlations decrease with increasing the lag in temperature (Figure 2). Moreover, there are some municipalities in which the correlation coefficient is considerably greater than others. Those correlations cannot be explained without considering the mosquito breeding sites found in these municipalities. In these municipalities there is a presence of important water resources, such as rice paddies, drainage canals, wetland systems or a combination of all the above. When surface waters warm and the outside temperature rises, the mosquito life cycle is completed more quickly, resulting in more generations being produced in a shorter period of time.Figure 2 Correlation heatmap of the correlation coefficient between the mosquito abundance (municipality scale) and the average monthly temperature up to 2 months before.Scatterplots and correlation heatmaps calculated with the Culex abundance and total precipitation, relative humidity or wind speed did not reveal similar patterns. Ongoing analysis focuses in more factors, environmental and not, which affect the abundance of mosquitoes that transmit WNV.Acknowledgments This research has been co‐financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code: Τ2ΕΔΚ-02070).
- Published
- 2023
- Full Text
- View/download PDF