Smarajit Polley, Arthur V. Hauenstein, Xiang-Yang Zhong, Amanda J. Fusco, Inder M. Verma, Don Vu, Tom Huxford, Youngchang Kim, De-Bin Huang, Gourisankar Ghosh, Alexander Hoffmann, Bärbel Schröfelbauer, and Petsko, Gregory A
Conformational change in human IKK2 permits dimers to form higher-order oligomers that support interaction between kinase domains and promote activation through trans auto-phosphorylation., Activation of the IκB kinase (IKK) is central to NF-κB signaling. However, the precise activation mechanism by which catalytic IKK subunits gain the ability to induce NF-κB transcriptional activity is not well understood. Here we report a 4 Å x-ray crystal structure of human IKK2 (hIKK2) in its catalytically active conformation. The hIKK2 domain architecture closely resembles that of Xenopus IKK2 (xIKK2). However, whereas inactivated xIKK2 displays a closed dimeric structure, hIKK2 dimers adopt open conformations that permit higher order oligomerization within the crystal. Reversible oligomerization of hIKK2 dimers is observed in solution. Mutagenesis confirms that two of the surfaces that mediate oligomerization within the crystal are also critical for the process of hIKK2 activation in cells. We propose that IKK2 dimers transiently associate with one another through these interaction surfaces to promote trans auto-phosphorylation as part of their mechanism of activation. This structure-based model supports recently published structural data that implicate strand exchange as part of a mechanism for IKK2 activation via trans auto-phosphorylation. Moreover, oligomerization through the interfaces identified in this study and subsequent trans auto-phosphorylation account for the rapid amplification of IKK2 phosphorylation observed even in the absence of any upstream kinase., Author Summary IκB kinase (IKK) is an enzyme that quickly becomes active in response to diverse stresses on a cell. Once activated, IKK promotes an array of cellular defense processes by phosphorylating IκB, thereby promoting its degradation and liberating its partner, the pro-survival transcription factor NF-κB; NF-κB is then free to relocate to the nucleus where it can modulate gene expression. Our X-ray crystallographic studies on an active version of the human IKK2 isoform reveal that the enzyme adopts a unique open conformation that permits pairs of IKK2 enzymes to form higher order assemblies in which their catalytic domains are in close proximity. Disruption of IKK2's ability to form these assemblies, by introducing changes that interfere with the surfaces that mediate oligomerization, results in IKK2 enzymes that are greatly impaired in their ability to become activated in cells. We propose that after oligomerization the neighboring catalytic domains then phosphorylate each other as part of the activation process. Our findings also suggest that targeted small molecules might disrupt cell survival by blocking IKK2 assembly in cells.