90 results on '"Bernard Fraisse"'
Search Results
2. L’allongement osseux par clou centromédullaire motorisé magnétique
- Author
-
Bernard Fraisse, Soline Bonneau, Sylvette Marleix, Grégory Lucas, and Philippe Violas
- Subjects
Pediatrics - Published
- 2022
3. Vis d’expansion sous-talienne pour pied plat valgus idiopathique flexible de l’enfant : résultats fonctionnels et radiologiques. Étude rétrospective multicentrique
- Author
-
Caroline Le Gall, Walid Lakhal, Emmanuelle Mayrargue, Bernard Fraisse, Sylvette Marleix, Gregory Lucas, Alexandre Losson, Nicolas Fréger, and Philippe Violas
- Subjects
Orthopedics and Sports Medicine ,Surgery - Published
- 2022
4. Stacking Versatility in Alkali-Mixed Honeycomb Layered NaKNi2TeO6
- Author
-
Gwenaëlle Rousse, François Weill, François Fauth, Montse Casas-Cabanas, Jon Serrano-Sevillano, Marie-Liesse Doublet, Romain Berthelot, Bernard Fraisse, Dany Carlier, Danielle Laurencin, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), CIC ENERGIGUNE - Parque Tecnol Alava, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), CELLS ALBA, Barcelona 08290, Spain, Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Ikerbasque - Basque Foundation for Science, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), The BL04-MSPD staff of CELLS-ALBA synchrotron is acknowledged for granting beamtime through InHouse quota (proposal 2020014011)., Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), and Basque Foundation for Science (Ikerbasque)
- Subjects
Diffraction ,Chemistry ,Sodium ,Stacking ,Honeycomb (geometry) ,Oxides ,Context (language use) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,Nuclear magnetic resonance spectroscopy ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Alkali metal ,01 natural sciences ,0104 chemical sciences ,Inorganic Chemistry ,Chemical physics ,Cations ,Potassium ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Density functional theory ,Physical and Theoretical Chemistry ,Layers ,0210 nano-technology ,Stacking fault - Abstract
International audience; The reaction between P2-type honeycomb layered oxides Na2Ni2TeO6 and K2Ni2TeO6 enables the formation of NaKNi2TeO6. The compound is characterized by X-ray diffraction and 23Na solid-state nuclear magnetic resonance spectroscopy, and the structure is discussed through density functional theory calculations. In addition to the honeycomb Ni/Te cationic ordering, NaKNi2TeO6 exhibits a unique example of alternation of sodium and potassium layers instead of a random alkali-mixed occupancy. Stacking fault simulations underline the impact of the successive position of the Ni/Te honeycomb layers and validate the presence of multiple stacking sequences within the powder material, in proportions that evolve with the synthesis conditions. In a broader context, this work contributes to a better understanding of the alkali-mixed layered compounds.
- Published
- 2021
5. [Bone lengthening by motorized centromedullary nail]
- Author
-
Bernard, Fraisse, Soline, Bonneau, Sylvette, Marleix, Grégory, Lucas, and Philippe, Violas
- Subjects
Treatment Outcome ,Bone Lengthening ,Humans ,Femur ,Bone Nails ,Child ,Leg Length Inequality - Abstract
Bone lengthening surgeries are difficult procedures for both the patient and the professional. Complications are common and pediatric orthopedists have been working to reduce them. The discovery of progressive bone lengthening was a first step in improving these procedures, followed by the advent of external fixators. More recently, internal lengthening systems have emerged as one of the greatest technological advances in these procedures. Bone lengthening with an electromagnetic nail, which is becoming increasingly popular, has drastically reduced the complications of these surgeries.
- Published
- 2022
6. Rationalizing the alkali ions distribution along the honeycomb layered (Li,Na)2SnO3 pseudo solid solution
- Author
-
Romain Berthelot, Carla Crobu, Eunice Mumba Mpanga, Bernard Fraisse, Marie-Liesse Doublet, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Montpellier (UM), Réseau sur le stockage électrochimique de l'énergie (RS2E), Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), and ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010)
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Solid solution ,Density functional theory calculations ,General Materials Science ,Honeycomb ordering ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,Physical and Theoretical Chemistry ,Alkali transition metal layered oxide ,Condensed Matter Physics - Abstract
International audience; Alkali-rich layered oxides Li2SnO3 and Na2SnO3 are isostructural, but no alkali-mixed compositions have been reported so far. While the thermodynamic stability of such mixed compositions is predicted by DFT calculations mainly for the sodium-rich side, single-phase compounds Li2-xNaxSnO3 were successfully obtained in the whole composition range (0 ≤ x ≤ 2) by conventional solid-state synthesis thanks to a quenching procedure at the end of the heat treatment. From Li2SnO3 to Na2SnO2, the evolution of the cell parameters and the DFT calculations demonstrate that the lithium-to-sodium substitution occurs firstly inside the alkali layer up to Li0.5Na1.5SnO3 and then in the honeycomb layer.
- Published
- 2023
7. Mechanisms of electrochemical magnesium (de)alloying of Mg-Sn and Mg-Pb polymorphs
- Author
-
Clément Pechberty, Antoine Klein, Bernard Fraisse, Lorenzo Stievano, Romain Berthelot, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Montpellier (UM), Réseau sur le stockage électrochimique de l'énergie (RS2E), Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), ANR-19-CE05-0013,MISTRALE,Batteries Mg-ion/Soufre avec électrodes d'alliage(2019), ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), European Project: 824066,H2020-FETPROACT-2018-01,E-MAGIC, and European Project: 829145
- Subjects
Mechanics of Materials ,Metals and Alloys ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,0210 nano-technology ,01 natural sciences ,0104 chemical sciences - Abstract
International audience; Different polymorphs of Mg-Sn and Mg-Pb intermetallic compounds were prepared by high-energy mechanical alloying and then investigated as active material in magnesium batteries. Beside thermodynamically stable Mg2Sn and Mg2Pb crystallizing in the anti-fluorite structure, other polymorphs Mg∼2Sn and Mg∼2Pb were prepared by increasing the ball-milling time. The first dealloying process is almost complete only for the cubic polymorphs, then similar capacities are observed during the subsequent alloying and dealloying sequences. Thanks to operando X-ray diffraction, the electrochemical mechanism is revealed and shows that the cubic polymorphs Mg2Sn and Mg2Pb tend to preferentially form during the alloying whatever the pristine intermetallic. Weak traces of Mg∼2Sn and Mg∼2Pb are observed during the alloying, suggesting that these polymorphs act as a by-product and/or an intermediate phases of the electrochemical process. Finally, the compatibility of cubic Mg2Sn and Mg2Pb with Mg(TFSI)2-based electrolyte is confirmed in full cell vs. a positive electrode based on the Chevrel phase Mo6S8, although limited performance is achieved. This fundamental work provides new insights in the behavior of alloy-type negative electrodes for magnesium-ion batteries.
- Published
- 2022
8. Management of a High-Risk Surgery with Emicizumab and Factor VIII in a Child with a Severe Hemophilia A and Inhibitor
- Author
-
Sophie Bayart, Fabienne Nedelec-Gac, Isabelle Gouin-Thibault, Adeline Pontis, Benoît Guillet, Charles R. Lefèvre, Bernard Fraisse, Anaïs Jaffré, Pierre Gueret, Institut de recherche en santé, environnement et travail (Irset), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Institut National de la Santé et de la Recherche Médicale (INSERM)-École des Hautes Études en Santé Publique [EHESP] (EHESP)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université d'Angers (UA), École des Hautes Études en Santé Publique [EHESP] (EHESP), CHU Pontchaillou [Rennes], Université d'Angers (UA)-Université de Rennes (UR)-École des Hautes Études en Santé Publique [EHESP] (EHESP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), and Chard-Hutchinson, Xavier
- Subjects
[SDV.MHEP.HEM] Life Sciences [q-bio]/Human health and pathology/Hematology ,Pediatrics ,medicine.medical_specialty ,Letter to the editor ,[SDV.MHEP.CHI] Life Sciences [q-bio]/Human health and pathology/Surgery ,MEDLINE ,[SDV.MHEP.CHI]Life Sciences [q-bio]/Human health and pathology/Surgery ,030204 cardiovascular system & hematology ,Severe hemophilia A ,03 medical and health sciences ,[SDV.MHEP.PED] Life Sciences [q-bio]/Human health and pathology/Pediatrics ,0302 clinical medicine ,Text mining ,hemic and lymphatic diseases ,Diseases of the circulatory (Cardiovascular) system ,Medicine ,Letter to the Editor ,Emicizumab ,[SDV.MHEP.PED]Life Sciences [q-bio]/Human health and pathology/Pediatrics ,business.industry ,[SDV.MHEP.HEM]Life Sciences [q-bio]/Human health and pathology/Hematology ,3. Good health ,[SDV.SP.PHARMA] Life Sciences [q-bio]/Pharmaceutical sciences/Pharmacology ,RC666-701 ,030220 oncology & carcinogenesis ,[SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/Pharmacology ,business - Abstract
International audience; The recent development of a humanized, bi-specific, and monoclonal antibody mimicking the function of activated factor VIII was a revolution in the management of patients suffering from severe hemophilia A with inhibitors. The phase III randomized studies have shown a more efficient prophylaxis of this subcutaneous administered drug in these patients compared with recombinant FVIIa (rFVIIa) and activated prothrombin complex concentrates (aPCC). Nonetheless, there are “real life” matters that need to be explored in this new era of managing hemophilia patients, such as surgery management under emicizumab, especially in children. Here, we report the first case, to our knowledge, of major orthopedic surgery managed with factor VIII infusions in a child with inhibitor receiving emicizumab.
- Published
- 2021
9. In situ high temperature XRD study of Sr-doped ceramics La0.95Sr0.05MnO3+δ
- Author
-
Moulay Tahar Sougrati, Oxana Rybchenko, Bernard Fraisse, V. D. Sedykh, D. I. Pchelina, Lomonosov Moscow State University (MSU), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
In situ ,Phase transition ,Materials science ,Analytical chemistry ,chemistry.chemical_element ,02 engineering and technology ,01 natural sciences ,Oxygen ,chemistry.chemical_compound ,Lanthanum manganite ,Lattice (order) ,0103 physical sciences ,Materials Chemistry ,[CHIM]Chemical Sciences ,Thermal stability ,Ceramic ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Doping ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,chemistry ,visual_art ,visual_art.visual_art_medium ,0210 nano-technology - Abstract
Sr-doped lanthanum manganite La0.95Sr0.05MnO3+δ powder was obtained by sol-gel method. The effect of heating behavior and the effect of interstitial oxygen on structural properties of the LSMO ceramics were studied by XRD, including high-temperature in situ measurements (150–6500С). The as prepared powder is single-phase and has a rhombohedral structure (R-3c space group). In situ XRD results showed that heating under vacuum does not lead to a structure change; which remains rhombohedral. However, with an increase of temperature, the lattice parameters increase, reflecting a decrease of interstitial oxygen fraction. In addition, rhombohedral angle α decreases, which indicates that the lattice tends to cubic. Comparison of the studied sample with the La0.95Sr0.05MnO3 annealed in vacuum under special conditions has been carried out. Thermal stability of the material under heating and vacuum, which did not lead to the expected phase transition, was revealed. The necessary conditions for obtaining oxygen stoichiometry are given in work.
- Published
- 2021
10. Stacking Versatility in Alkali-Mixed Honeycomb Layered NaKNi
- Author
-
Romain, Berthelot, Jon, Serrano-Sevillano, Bernard, Fraisse, François, Fauth, François, Weill, Danielle, Laurencin, Montse, Casas-Cabanas, Dany, Carlier, Gwenaëlle, Rousse, and Marie-Liesse, Doublet
- Abstract
The reaction between P2-type honeycomb layered oxides Na
- Published
- 2021
11. Functional and radiological outcome of subtalar arthroereisis for flexible pes planovalgus in children: A retrospective analysis
- Author
-
Caroline Le Gall, Walid Lakhal, Emmanuelle Mayrargue, Bernard Fraisse, Sylvette Marleix, Gregory Lucas, Alexandre Losson, Nicolas Fréger, and Philippe Violas
- Subjects
Orthopedics and Sports Medicine ,Surgery - Abstract
Pediatric idiopathic pes planovalgus can correct itself with growth. Otherwise, in the event of functional impairment and after failed conservative treatment, surgery can be considered. Based on a multicenter retrospective study, we report the functional and radiographic results obtained after subtalar arthroereisis.We hypothesized that this surgery improves functional and radiological parameters in childhood.Forty-eight medical records of children (78 feet) operated on between 2010 and 2019 were studied. Functional (FAOS score) and radiographic (Djian angle, calcaneal slope, lateral talocalcaneal divergence and calcaneus/M5 alignment, talonavicular coverage measurement, AP talocalcaneal divergence) results were studied. The analysis of these different criteria was carried out between the preoperative period and the last follow-up.The functional outcome was satisfactory with an average FAOS questionnaire score of 95.5 out of 100 total points. All the radiographic parameters studied were significantly improved (p0.001). The average age at the time of surgery was 11.3 years (range: 7 to 16) with a mean follow-up of 35 months (range: 18 months to 84). Spontaneous screw expulsion and subtalar pain were the main complications found.The results obtained are consistent with those in the literature. The age at the time of the surgery is an essential factor to consider with the goal of optimal correction.This technique is reliable and effective in the short term. It can be offered as first-line therapy in the management of symptomatic pes planovalgus in children. The follow-up is short, which necessitates longer term studies of this population. The ideal age for surgery remains to be determined.IV.
- Published
- 2021
12. Alkali-Glass Behavior in Honeycomb-Type Layered Li3–xNaxNi2SbO6 Solid Solution
- Author
-
Emmanuelle Suard, Paula Sanz-Camacho, Yohan Biecher, Matthieu Saubanère, Coélio Vallée, Gwenaëlle Rousse, Bernard Fraisse, Dany Carlier, Romain Berthelot, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Laue-Langevin (ILL), ILL, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
Diffraction ,Layered oxides ,solid-solution ,010405 organic chemistry ,Neutron diffraction ,Oxide ,chemistry.chemical_element ,honeycomb ordering ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,Alkali metal ,01 natural sciences ,alkali mixed occupancy ,0104 chemical sciences ,Inorganic Chemistry ,Crystallography ,chemistry.chemical_compound ,chemistry ,Honeycomb ,Lithium ,Density functional theory ,Physical and Theoretical Chemistry ,Solid solution - Abstract
International audience; Layered oxide compositions Li3–xNaxNi2SbO6 have been prepared by solid-state synthesis. A complete solid solution is evidenced and characterized by X-ray and neutron diffraction as well as 7Li and 23Na solid-state nuclear magnetic resonance spectroscopy. The transition-metal layer is characterized by the classic honeycomb Ni2+/Sb5+ ordering, whereas a more uncommon randomly mixed occupancy of lithium and sodium is evidenced within the alkali interslab space. In situ X-ray diffraction and density functional theory calculations show that this alkali disordered feature is entropically driven. Fast cooling then appears as a synthesis root to confine bidimensional alkali glass within crystalline layered oxides.
- Published
- 2019
13. Exploration of a Na3V2(PO4)3/C –Pb full cell Na-ion prototype
- Author
-
Bidhan Pandit, Moulay Tahar Sougrati, Bernard Fraisse, and Laure Monconduit
- Subjects
Renewable Energy, Sustainability and the Environment ,General Materials Science ,Electrical and Electronic Engineering - Published
- 2022
14. Carbon-coated FePO4 nanoparticles as stable cathode for Na-ion batteries: A promising full cell with a Na15Pb4 anode
- Author
-
Bidhan Pandit, Bernard Fraisse, Lorenzo Stievano, Laure Monconduit, Moulay Tahar Sougrati, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Montpellier (UM), Réseau sur le stockage électrochimique de l'énergie (RS2E), Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), SATT AxLR Occitanie Méditerranée (Montpellier, France), project PLOBANA (AAP Pré-Maturation 2018, 2018-003451), and ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010)
- Subjects
General Chemical Engineering ,Electrochemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry - Abstract
International audience; The cheap and non-toxic FePO4, which can be recovered from spent LFP batteries, provides a reversible capacity of 103 mAh/g in coin cells, corresponding to 76% of theoretical capacity, with very good rate capability and stability. The study of the electrochemical mechanism during sodiation carried out by in situ X-ray diffraction (XRD) reveals a pure biphasic transition during Na+ (de)insertion. The chemical diffusion coefficient (DNa) determined from galvanostatic intermittent titration technique and electrochemical impedance spectroscopy varies in the range 10−16-10−10 cm2/s at room temperature depending on the degree of sodiation. As a proof of concept, a full cell fabricated using a carbon-coated C@FePO4 cathode and a Na15Pb4 anode obtained by electrochemical sodiation of recyclable Pb, maintained 76% of the initial capacity over 100 cycles at constant C/10 rate. This outstanding electrochemical performance, based on the combination of the low-cost C@FePO4 cathode with a recyclable lead-based anode, makes this new technology a promising real-world alternative for future commercial Na-ion systems.
- Published
- 2022
15. An in-situ x-ray diffraction and infrared spectroscopic study of the dehydration of AlPO4-54
- Author
-
Bernard Fraisse, Marco Fabbiani, Rossella Arletti, Michelangelo Polisi, Mario Santoro, Frederico G. Alabarse, Julien Haines, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Dipartimento di chimica (IFM) (Dipartimento di chimica (IFM)), Università degli studi di Torino (UNITO), Università degli Studi di Modena e Reggio Emilia (UNIMORE), Istituto Nazionale di Ottica (INO), and Consiglio Nazionale delle Ricerche (CNR)
- Subjects
Materials science ,Analytical chemistry ,Infrared spectroscopy ,02 engineering and technology ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,01 natural sciences ,Crystal ,Phase (matter) ,General Materials Science ,infrared spectroscopy ,Dehydration ,Aluminophosphate ,X-ray diffraction ,dehydration ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,x-ray diffraction ,X-ray crystallography ,Anhydrous ,Crystallite ,0210 nano-technology ,Single crystal ,Monoclinic crystal system - Abstract
International audience; The dehydration of the large pore aluminophosphate AlPO4-54•xH2O was studied in situ as a function of vacuum pressure at room temperature by infrared spectroscopy and x-ray diffraction. On polycrystalline samples, under primary vacuum, the adsorbed water is removed very rapidly. The structural water in the AlO6 octahedra is then removed slowly with the quantity of the fully dehydrated form gradually increasing from 43 to 65% of the total material. This results in a two-phase mixture of fully dehydrated and a distinct partially dehydrated AlPO4-54•1/2H2O phase containing structural water. These phases have almost identical a cell parameters and very close c parameters. Secondary vacuum increases the amount of fully dehydrated material to more than 76%. Prolonged heating under vacuum increases the amount of fully dehydrated material to 90%. On single crystal samples, removal of adsorbed water is slower and results in a reduction in crystal quality, however prolonged exposure to primary vacuum yielded fully dehydrated material without the need for heating. The monoclinic structure of anhydrous AlPO4-54, space group Cm, with a doubled unit cell was confirmed using single crystal synchrotron x-ray diffraction data.
- Published
- 2020
16. Electrochemical Performance and Mechanism of Calcium Metal‐Organic Battery
- Author
-
Lorenzo Stievano, Bernard Fraisse, Jan Bitenc, Robert Dominko, Jože Grdadolnik, Matic Lozinšek, Klemen Pirnat, Romain Berthelot, Ivan Jerman, Antonio Scafuri, National Institute of Chemistry Ljubljana, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), University of Ljubljana, Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), European Project: 28721,ALISTORE, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
Battery (electricity) ,Materials science ,Energy Engineering and Power Technology ,Organic radical battery ,02 engineering and technology ,Electrolyte ,Overpotential ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,Redox ,Energy storage ,Cathode ,0104 chemical sciences ,law.invention ,Chemical engineering ,law ,[CHIM]Chemical Sciences ,Electrical and Electronic Engineering ,0210 nano-technology - Abstract
International audience; Abundance of Ca, its low redox potential and high specific capacity make Ca metal batteries an attractive energy storage system for the future. Recent demonstration of room temperature calcium plating/stripping opened new avenue of development, but performance of cathode materials is still lagging behind. Due to nature of divalent cations, conversion and coordination electrochemical reactions show better performance compared to insertion. Herein we demonstrate use of anthraquinone based polymer as cathode material for Ca metal‒organic battery. Electrochemical mechanism investigation confirms reversible reduction of carbonyl bond and coordination with Ca 2+ cations in the discharged state opening a pathway toward high energy density battery. Continued performance of 2‐electrode cell is strongly hampered by overpotential increase connected with Ca stripping process on Ca metal anode stating need for further development of Ca electrolytes. Ca metal‒organic battery promise to achieve cells with gravimetric energy density on the practical level compared to state‐of‐the‐art Li‐ion batteries.
- Published
- 2020
17. Smectite quantification in hydrothermally altered volcanic rocks
- Author
-
Thráinn Fridriksson, Nicolas Marino, Bernard Fraisse, Bruno Lanson, Benoit Gibert, Nathaniel Findling, Léa Lévy, Laboratoire de géologie de l'ENS (LGENS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland, 101 Reykjavík, Iceland, ÍSOR - Iceland GeoSurvey, Reykjavík, Iceland, Institut des Sciences de la Terre (ISTerre), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Géosciences Montpellier, Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Université des Antilles (UA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie, Ecole Normale Supérieure, Paris Sciences et Lettres, CNRS, Paris, France, Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Laboratoire de géologie de l'ENS (LGE), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Grenoble Alpes (UGA)-Université Gustave Eiffel-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2), Université des Antilles et de la Guyane (UAG)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), University of Iceland [Reykjavik], Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)
- Subjects
0211 other engineering and technologies ,Mineralogy ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Fraction (chemistry) ,02 engineering and technology ,010502 geochemistry & geophysics ,01 natural sciences ,Hydrothermal circulation ,Electrical resistivity and conductivity ,Cation-exchange capacity ,021108 energy ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,[SDU.STU.AG]Sciences of the Universe [physics]/Earth Sciences/Applied geology ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,geography ,geography.geographical_feature_category ,Renewable Energy, Sustainability and the Environment ,Chemistry ,Geology ,Geotechnical Engineering and Engineering Geology ,Volcanic rock ,Volcano ,Clay minerals ,Mass fraction ,[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/Mineralogy - Abstract
International audience; In volcanic environments, the presence of smectite may indicate recent hydrothermal circulations. Smectite is also responsible for enhanced rock electrical conductivity, as well as mechanical weakening. Therefore, 1 quantifying smectite is important in geothermal exploration. Smectite identification requires X-ray diffraction (XRD) but quantification based on XRD is time-consuming and not always accurate. In the present study, we investigate the use of an optimized unbuffered Cation Exchange Capacity (CEC) measurement, by back-titration of the Coppertriethylenetetramine(II) "Cu-trien" molecule, to quantify the smectite content of altered volcanic rock samples. We establish that a satisfying trade-off between the instrument uncertainty and an independant systematic error is theoretically reached for a fraction of reactants consumed of about 30% at the end of the exchange reaction. We suggest a modification to classical protocols to fall in that range. Finally, we show that optimized CEC measurements by Cu-trien are a direct measure of the smectite weight fraction in altered volcanic samples, with an average CEC of pure smectite of 90 ± 5 meq/100g.
- Published
- 2020
18. Hydration mechanism in Ce-exchanged zeolites and heat release performances upon adsorption of water vapour in support of their potential use in thermochemical storage of energy under mild conditions of adsorbent regeneration and saturation
- Author
-
Bernard Fraisse, Philippe Trens, Jerzy Zajac, Hao Wu, Fabrice Salles, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Thermogravimetric analysis ,mild adsorbent regeneration and saturation ,Materials science ,cation exchange ,chemistry.chemical_element ,02 engineering and technology ,Calorimetry ,010402 general chemistry ,Mole fraction ,7. Clean energy ,01 natural sciences ,Monte Carlo simulations ,Adsorption ,13X zeolite ,General Materials Science ,trivalent and tetravalent cerium ,Zeolite ,gas flow calorimetry ,cation distribution ,Sorption ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Cerium ,heats of adsorption ,chemistry ,Chemical engineering ,13. Climate action ,Mechanics of Materials ,thermochemical energy storage ,adsorption isotherms ,0210 nano-technology ,Saturation (chemistry) ,water vapour adsorption - Abstract
The potential use of commercially available 13X zeolite, modified by ion-exchange with cerium compensating cations possessing high charges and high hydration energies, has been tested in view of low-temperature storage of solar energy performed under mild operating conditions of low regeneration temperatures and low pressures of water vapour during the adsorption step. Structural and textural properties, sorption behaviour towards water vapour of three selected samples containing various proportions of Ce3+ and Ce4+ compensating cations and the pristine Na+-13X zeolite were studied by a variety of experimental techniques including Wavelength Dispersive X-Ray Fluorescence, Energy Dispersive X-ray Spectroscopy, X-ray diffraction, Thermogravimetric analysis, as well as measurements of the adsorption of gaseous nitrogen at 77 K and water vapour at 313 K. Based on the structure refinement procedure applied to the experimental XRD patterns, it was demonstrated that extra-framework cerium cations were preferentially located on sites I’ and II in dry and hydrated zeolites, showing relatively little dependence on the hydration level. Monte Carlo simulations were used to determine the limit values of the amount adsorbed and differential heat of adsorption, which could be obtained experimentally if the zeolite samples were completely dried. The potential of Ce-containing zeolites as adsorbents for the thermochemical energy storage was finally determined under flow conditions by firstly dehydrating samples at 353 K or 423 K and then saturating them at 296 K with water vapour at a mole fraction of 0.03. The choice of the operating conditions was decided so as to maintain the stability of the zeolite structure while taking the risk of reduced thermal performance of zeolite adsorbents undergoing incomplete regeneration-dehydration. Under such mild conditions, the modified 13X zeolites exhibited enhanced thermal performance in comparison with that of the pristine 13X, by releasing between 700 and 1100 kJ per kg of the adsorbent during a period of 6–8 h. Through a complementary study based on calorimetry measurements and molecular simulations, the understanding of the hydration-dehydration steps in Ce-exchanged zeolites and cation displacement upon hydration has allowed to establish the best compromise for the conditions of zeolite regeneration and saturation in the case of heat long-term storage applications.
- Published
- 2020
19. Characterization of the heat behavior of amiodarone hydrochloride
- Author
-
Atourya Mhoumadi, Mohamed Elkhashab, Sylvain Prillieux, Jean-Bernard Dumas, Franck Collas, Nicolas Louvain, Bernard Fraisse, and Philippe Espeau
- Subjects
Physical and Theoretical Chemistry ,Condensed Matter Physics ,Instrumentation - Published
- 2022
20. Alkaline-earth metal-doped perovskites La0.95A0.05MnO3+δ (A = Ca, Sr): New structural and magnetic features revealed by 57Fe Mössbauer spectroscopy and magnetic measurements
- Author
-
Alexey Tselebrovskiy, Lorenzo Stievano, Moulay Tahar Sougrati, Bernard Fraisse, V. D. Sedykh, Yulia Alekhina, Nataliya Chistyakova, D. I. Pchelina, Vyacheslav S. Rusakov, Lomonosov Moscow State University (MSU), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,perovskites ,Analytical chemistry ,chemistry.chemical_element ,02 engineering and technology ,Manganese ,01 natural sciences ,0103 physical sciences ,Mössbauer spectroscopy ,Lanthanum ,Antiferromagnetism ,General Materials Science ,010302 applied physics ,Ionic radius ,superparamagnetism ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,chemistry ,Ferromagnetism ,Orthorhombic crystal system ,magnetic properties ,phase separation ,0210 nano-technology ,doped lanthanum manganites ,Superparamagnetism - Abstract
International audience; Ca- and Sr-doped lanthanum manganese perovskites La0.95A0.05Mn0.98Fe0.02O3+δ (A = Ca, Sr) (LCM and LSM) of non-stoichiometric (NS) and stoichiometric (S) compositions were prepared by sol-gel method and investigated by 57Fe Mössbauer spectroscopy and magnetic measurements. In contrast to non-stoichiometric samples, which contain pure singles phases, a mixture of orthorhombic phases O (PnmaI), O′ (PnmaII)and O′′ (PnmaII*)are detected in samples of stoichiometric compositions. The magnetic data, supported by Mössbauer measurements, show the spontaneous formation of magnetically ordered clusters with sizes in the range 2.5–4.6 nm in all samples. The main differences between the investigated LCM and LSM systems, and in particular the less extended phase separation in LSM-S than in LCM-S is connected to the difference in ionic radii on the doping ions, the influence of the Jahn-Teller effect at the Mn+3 centres and the size distributions of the ferromagnetic clusters. Our results show, for the first time, that the O′′ (PnmaII*) phase is characterized by antiferromagnetic ordering.
- Published
- 2021
21. Unidimensional unit cell variation and Fe+3/Fe+4 redox activity of Li3FeN2 in Li-ion batteries
- Author
-
Nicolas Emery, Jean-Pierre Pereira-Ramos, Stéphane Bach, Patrick Willmann, Jean-Claude Jumas, Bernard Fraisse, E. Panabière, and Moulay Tahar Sougrati
- Subjects
Chemistry ,Mechanical Engineering ,Inorganic chemistry ,Metals and Alloys ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,Redox ,Nitrogen ,0104 chemical sciences ,Ion ,Crystallography ,Octahedron ,Mechanics of Materials ,Spin crossover ,Mössbauer spectroscopy ,Materials Chemistry ,Orthorhombic crystal system ,0210 nano-technology - Abstract
Li 3 FeN 2 displays rich and complex structural response upon electrochemical oxidation/reduction. During the first lithium deintercalation, 4 voltage plateaus corresponding to a total charge transfer of 1.14 e − per iron cation take place. Combining operando Mossbauer spectroscopy and X-ray diffraction, we evidence 3 biphasic reactions involving four orthorhombic phases. Despite a derived anti-fluorine type structure, Li 3 FeN 2 oxidation induces a unidirectional contraction along b axis. Mossbauer spectroscopy established a partial iron oxidation (∼90%). Therefore the participation of the nitrogen network as additional redox center is suggested to explain the observed extra capacity. Moreover, an unexpected low spin to high spin crossover took place for ∼10% of Fe 3+ during the oxidation of Li 3 FeN 2 . Based on the cationic mixing recently demonstrated and the anisotropic structural response, two possible explanations are discussed; (i) a significant deformation of 8 g lithium sites, which contain ∼10% of iron cations or (ii) migration of these cations into the neighboring octahedron 8 j . This High Spin Fe +3 contribution remains almost constant until the end of the oxidation.
- Published
- 2017
22. Improved Crystalline Structure and Enhanced Photoluminescence of ZnO Nanolayers in Bi2Se3/ZnO Heterostructures
- Author
-
Octavio Graniel, Domantas Peckus, Jana Andzane, Sigitas Tamulevičius, Margarita Baitimirova, Roman Viter, Bernard Fraisse, Mikhael Bechelany, Donats Erts, John Watt, University of Latvia (LU), Institute of Atomic Physics and Spectroscopy [Latvia], Sumy State University, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Institut Européen des membranes (IEM), Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM), Los Alamos National Laboratory (LANL), and Kaunas University of Technology (KTU)
- Subjects
Materials science ,Photoluminescence ,business.industry ,Substrate (chemistry) ,Heterojunction ,02 engineering and technology ,Crystal structure ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Nanomaterials ,General Energy ,Optoelectronics ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,0210 nano-technology ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
The Bi2Se3/ZnO heterostructure is a new combination of high- and low-band-gap nanomaterials that can be implemented for optoelectronic devices. The influence of the Bi2Se3 substrate on crystallizat...
- Published
- 2019
23. ZnSnSb2 anode: A solid solution behavior enabling high rate capability in Li-ion batteries
- Author
-
Moulay Tahar Sougrati, Laure Monconduit, David Ayme-Perrot, Stéphane Biscaglia, Bernard Fraisse, Gaël Coquil, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Agence de l'Environnement et de la Maîtrise de l'Energie (ADEME), Hutchinson SA, Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), and TOTAL S.A
- Subjects
Materials science ,Alloy ,Intermetallic ,Energy Engineering and Power Technology ,02 engineering and technology ,engineering.material ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,[CHIM]Chemical Sciences ,Electrical and Electronic Engineering ,Physical and Theoretical Chemistry ,Polarization (electrochemistry) ,ComputingMilieux_MISCELLANEOUS ,Renewable Energy, Sustainability and the Environment ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Anode ,Chemical engineering ,Electrode ,engineering ,0210 nano-technology ,Capacity loss ,Faraday efficiency ,Solid solution - Abstract
International audience; ZnSnSb2 intermetallic alloy as anode material for Li-ion batteries has been investigated for the first time in this work. This material is able to deliver a high capacity of 615 mAh/g for 200 cycles at 4C (a current density of 0.25 A/g) with a good a coulombic efficiency exceeding 99.3 %. Furthermore, the electrode material exhibit a high rate capability between C/5 (12.6 mA/g) and 10C (630 mA/g), with a reversible capacity loss of 19% and a polarization increasing of only 0.05 V. Among all reported MSnSb (with M= Ag, Ti, Cu…) alloys, ZnSnSb2 exhibits the most outstanding rate capability and long cycling life. The observed behavior can be linked not only to the quasi-topotactic de/lithiation reaction between the ZnSnSb2 and Li3Sb but also to the solid solution mechanism evidenced from operando X-ray diffraction analysis. This suggests that the electrode exhibits a great resistance to the volume expansion and the mechanical stress during cycling even at high cycling rates (10C).
- Published
- 2019
24. Cobalt Carbodiimide as Negative Electrode for Li‐Ion Batteries: Electrochemical Mechanism and Performance
- Author
-
Moulay Tahar Sougrati, Richard Dronskowski, Jeethu Jiju Arayamparambil, Antonella Iadecola, Markus Mann, Lorenzo Stievano, Bernard Fraisse, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), ANR-10-EQPX-0045,ROCK,Spectromètre EXAFS Rapide pour Cinétiques Chimiques(2010), European Project: 28721,ALISTORE, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
X-ray absorption spectroscopy ,Materials science ,Absorption spectroscopy ,Inorganic chemistry ,chemistry.chemical_element ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,7. Clean energy ,Catalysis ,0104 chemical sciences ,chemistry.chemical_compound ,chemistry ,Transition metal ,Electrode ,Cyanamide ,0210 nano-technology ,Cobalt ,Carbodiimide - Abstract
International audience; Cobalt carbodiimide, CoNCN, shows outstanding performance as negative electrode material for Li‐ion batteries, maintaining a reversible capacity of 530 mAh g−1 over 140 cycles at a current density of 540 mA g−1. The electrochemical lithiation/delithiation mechanism of cobalt carbodiimide was investigated using complementary in situ X‐ray diffraction and X‐ray absorption spectroscopy. Upon lithiation, CoNCN undergoes a reversible conversion reaction, forming Li2NCN and fcc Co metal nanoparticles, which are transformed back into CoNCN upon delithiation. However, the CoNCN obtained electrochemically after delithiation do not recover the local structure of the pristine phase, and might contain the NCN2− ligand in the cyanamide isomer form (N−C≡N2−). It would be the first time that a transition metal cyanamide isomer is obtained at ambient conditions.
- Published
- 2019
25. Operando X-ray absorption spectroscopy applied to battery materials at ICGM: The challenging case of BiSb's sodiation
- Author
-
Valérie Briois, Romain Berthelot, Stéphanie Belin, Raphaël P. Hermann, Ali Darwiche, Marcus Fehse, Abdelfattah Mahmoud, Lorenzo Stievano, Antonella Iadecola, Bernard Fraisse, Fabrizio Murgia, Moulay Tahar Sougrati, Camille La Fontaine, Laure Monconduit, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Dutch Belgian Beam line (DUBBLE), European Synchrotron Radiation Facility (ESRF), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Group of Research in Energy and ENvironment from MATerials (GREENMAT), Université de Liège, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC, Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Depart- ment of Energy. Synchrotron SOLEIL (France) is gratefully acknowledged for providing beamtime at the ROCK beamline., ANR-10-EQPX-0045,ROCK,Spectromètre EXAFS Rapide pour Cinétiques Chimiques(2010), European Project: 314515,EC:FP7:NMP,FP7-2012-GC-MATERIALS,EUROLIS(2012), European Project: 28721,ALISTORE, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), European Synchroton Radiation Facility [Grenoble] (ESRF), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
X-ray absorption spectroscopy ,Electrode material ,Materials science ,Absorption spectroscopy ,Renewable Energy, Sustainability and the Environment ,Energy Engineering and Power Technology ,Nanotechnology ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,0104 chemical sciences ,Electrochemical cell ,Energy materials ,General Materials Science ,0210 nano-technology - Abstract
X-ray absorption spectroscopy (XAS) is a synchrotron-based, element-specific, short-range structural method largely used in the study of materials, already widely employed for the study of the electrochemical processes in battery systems. The high penetration of the X-rays makes XAS particularly suited for the study of battery materials under operando conditions using specifically developed in situ electrochemical cells. In this paper, the application of XAS to the study of battery materials carried out at Institut Charles Gerhardt Montpellier (France) will be outlined, illustrating the type of information provided by XAS. The challenging study of the sodiation of Bi 0.50 Sb 0.50 followed individually and simultaneously at both metals will be also presented in order to highlight the typical advantages of this technique even when it is pushed at its technical limits.
- Published
- 2019
26. Alkali-Glass Behavior in Honeycomb-Type Layered Li
- Author
-
Coélio, Vallée, Matthieu, Saubanère, Paula, Sanz-Camacho, Yohan, Biecher, Bernard, Fraisse, Emmanuelle, Suard, Gwenaëlle, Rousse, Dany, Carlier, and Romain, Berthelot
- Abstract
Layered oxide compositions Li
- Published
- 2019
27. In-depth study of annealed porous silicon: Understand the morphological properties effect on negative LiB electrode performance
- Author
-
Aude Roland, Arthur Dupuy, Frédérique Cunin, Laure Monconduit, Denis Machon, Abderaouf Boucherif, Nicolas Louvain, Bernard Fraisse, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Institut Interdisciplinaire d'Innovation Technologique [Sherbrooke] (3IT), Université de Sherbrooke (UdeS), Laboratoire Nanotechnologies et Nanosystèmes [Sherbrooke] (LN2), Université de Sherbrooke (UdeS)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Lumière Matière [Villeurbanne] (ILM), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Nanotechnologies Nanosystèmes (LN2 ), Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Sherbrooke [Sherbrooke]-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS), Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke [Sherbrooke], and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Silicon ,Annealing (metallurgy) ,General Chemical Engineering ,technology, industry, and agriculture ,chemistry.chemical_element ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Porous silicon ,Electrochemistry ,equipment and supplies ,01 natural sciences ,0104 chemical sciences ,[SPI]Engineering Sciences [physics] ,chemistry ,Electrode ,Wetting ,Composite material ,0210 nano-technology ,Porosity - Abstract
International audience; Silicon (Si) used as negative electrode in a Li-ion battery (LIB) is highly attractive for its high energy density, safe cycling, and nontoxicity. However its alloying mechanism with Li induces material pulverization, which leads to a rapid capacity fade. In this work, annealing post treatment was used in order to tune the morphological properties of porous silicon. Playing on annealing temperature, the morphological modification induces electrochemical behavior changes in LIB. The porosification is an interesting way to accommodate the volume expansion occurring during the alloying process. Increase of the annealing temperature leads to porous Si pores and walls reorganization, which has a positive impact on battery performance likely due to a higher wettability of the Si electrode with electrolyte. 700 °C appeared to be the optimized annealing temperature.
- Published
- 2019
28. Ultra-fast dry microwave preparation of SnSb used as negative electrode material for Li-ion batteries
- Author
-
Stéphane Biscaglia, Moulay Tahar Sougrati, Bernard Fraisse, F. Morato-Lallemand, David Ayme-Perrot, Laure Monconduit, Philippe Antitomaso, and Philippe-Franck Girard
- Subjects
Materials science ,Alloy ,Oxide ,Energy Engineering and Power Technology ,chemistry.chemical_element ,Crucible ,Nanotechnology ,02 engineering and technology ,engineering.material ,010402 general chemistry ,01 natural sciences ,law.invention ,chemistry.chemical_compound ,law ,Antimonide ,Electrical and Electronic Engineering ,Physical and Theoretical Chemistry ,Renewable Energy, Sustainability and the Environment ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,Chemical engineering ,engineering ,0210 nano-technology ,Tin ,Carbon ,Microwave ,Susceptor - Abstract
Tin antimonide alloy was obtained for the first time using a very simple dry microwave route. Up to 1 g of well crystallized SnSb can be easily prepared in 90 s under air in an open crucible. A full characterization by X-ray diffraction and 119 Sn Mossbauer spectroscopy demonstrated the benefit of carbon as susceptor, which avoid any oxide contamination. The microwave-prepared SnSb was tested as negative electrode material in Li batteries. Interesting results in terms of capacity and rate capability were obtained with up to 700 mAh/g sustained after 50 cycles at variable current. These results pave the way for the introduction of microwave synthesis as realistic route for a rapid, low cost and up-scalable production of electrode material for Li batteries or other large scale application types.
- Published
- 2016
29. Reversible High Capacity and Reaction Mechanism of Cr 2 (NCN) 3 Negative Electrodes for Li‐Ion Batteries
- Author
-
Richard Dronskowski, Kai-Xuan Chen, Moulay Tahar Sougrati, Markus Mann, Jeethu Jiju Arayamparambil, Lorenzo Stievano, Bernard Fraisse, Antonella Iadecola, Xianji Qiao, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Shenzhen Polytechnic, Grant JARA-HPC (JARA0179) of IT center of RWTH Aachen University, ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), ANR-10-EQPX-0045,ROCK,Spectromètre EXAFS Rapide pour Cinétiques Chimiques(2010), European Project: 28721,ALISTORE, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Advanced Lithium Energy Storage Systems - ALISTORE (FRANCE), ANR-10-LABX-0076/10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), and ANR-10-EQPX-0045/10-EQPX-0045,ROCK,Spectromètre EXAFS Rapide pour Cinétiques Chimiques(2010)
- Subjects
Reaction mechanism ,Materials science ,Absorption spectroscopy ,Intercalation (chemistry) ,Inorganic chemistry ,chemistry.chemical_element ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,7. Clean energy ,Redox ,0104 chemical sciences ,chemistry.chemical_compound ,General Energy ,chemistry ,Electrochemical reaction mechanism ,Lithium ,ddc:620 ,0210 nano-technology ,Carbodiimide - Abstract
Energy technology 8(3), 1901260 (2020). doi:10.1002/ente.201901260, Published by Wiley-VCH, Weinheim [u.a.]
- Published
- 2020
30. The Electrochemical Sodiation of Sb Investigated by Operando X-ray Absorption and 121Sb Mössbauer Spectroscopy: What Does One Really Learn?
- Author
-
Moulay Tahar Sougrati, Laure Monconduit, Raphaël P. Hermann, Marie-Liesse Doublet, Abdelfattah Mahmoud, Lorenzo Stievano, Bernard Fraisse, Mouna Ben Yahia, Ali Darwiche, Marcus Fehse, Camille La Fontaine, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), European Synchroton Radiation Facility [Grenoble] (ESRF), Delft University of Technology (TU Delft), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Group of Research in Energy and ENvironment from MATerials (GREENMAT), Université de Liège, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), European Project: 28721,ALISTORE, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Dutch Belgian Beam line (DUBBLE), European Synchrotron Radiation Facility (ESRF), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), and Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Absorption spectroscopy ,Analytical chemistry ,Energy Engineering and Power Technology ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,DFT calculations ,01 natural sciences ,Na-ion batteries ,Antimony ,Ab initio quantum chemistry methods ,Phase (matter) ,Mössbauer spectroscopy ,lcsh:TK1001-1841 ,Electrochemistry ,Electrical and Electronic Engineering ,Absorption (electromagnetic radiation) ,X-ray absorption spectroscopy ,[CHIM.MATE]Chemical Sciences/Material chemistry ,alloy reaction ,021001 nanoscience & nanotechnology ,chemometrics ,3. Good health ,0104 chemical sciences ,Amorphous solid ,lcsh:Production of electric energy or power. Powerplants. Central stations ,MCR-ALS ,chemistry ,lcsh:Industrial electrochemistry ,0210 nano-technology ,Sb ,lcsh:TP250-261 - Abstract
In this study, we want to highlight the assets and restrictions of X-ray absorption spectroscopy (XAS) and Mö, ssbauer spectroscopy for investigating the mechanism of the electrochemical reaction of antimony electrode materials vs. Na. For this, operando XAS was carried out during the first one and a half cycles, and the whole set of measured data was analysed using a statistical-chemometric approach, while low temperature Mö, ssbauer spectroscopy measurements were carried out ex situ on selected samples stopped at different points of the electrochemical reaction. Complementary ab initio calculations were performed to support the experimental findings. Both techniques show that, upon the first sodiation, most Sb reacts with Na to form disordered Na 3 Sb. This step is accompanied by the formation of amorphous Sb as an intermediate. Upon inversion of the current Na 3 Sb is desodiated and an amorphous Sb phase, distinct from the pristine bulk Sb state, is gradually formed. However, both XAS and Mö, ssbauer spectroscopy were unable to spot the formation of intermediate Na x Sb phases, which were evinced in previous works by operando Pair Distribution Function analyses. The results shown here clearly assign such failure to the intrinsic inability of both techniques to identify these intermediates.
- Published
- 2018
31. Electrochemical Lithiation of Ge: New Insights by Operando Spectroscopy and Diffraction
- Author
-
Athmane Boulaoued, Laure Monconduit, Laura C. Loaiza, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Bernard Fraisse, Vincent Seznec, Nicolas Louvain, Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Chalmers University of Technology [Göteborg], Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-10-EQPX-0045,ROCK,Spectromètre EXAFS Rapide pour Cinétiques Chimiques(2010), European Project: 28721,ALISTORE, Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), and Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
X-ray absorption spectroscopy ,Materials science ,chemistry.chemical_element ,Germanium ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Thermal diffusivity ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Amorphous solid ,symbols.namesake ,General Energy ,chemistry ,Operando spectroscopy ,Phase (matter) ,symbols ,Physical chemistry ,Lithium ,Physical and Theoretical Chemistry ,0210 nano-technology ,Raman spectroscopy - Abstract
International audience; The relatively high cost of metallic germanium (Ge) as a lithium-ion battery negative electrode material is more than counterbalanced by its high capacity, high lithium diffusivity, and electronic conductivity. Using a unique and highly complementary set of operando characterization techniques, we propose a complete mechanism for the reversible lithiation of Ge. The electrochemical mechanism is found to be determined by the process of discharge/charge: (i) independent of the charge/discharge rate amorphous a-LiGe is proposed as the first intermediate during the lithiation of c-Ge, followed by Li7Ge3, and (ii) at low potential Li15Ge4 is observed, but only for moderate rates and never at low rates, where indeed an “overlithiated” phase is preferred. The complementarity of the data obtained from XAS, Raman spectroscopies, and XRD, all in operando mode, was crucial in order to understand the complex mechanism based on reversible formation of the various crystalline and amorphous phases.
- Published
- 2018
32. Performance and mechanism of FeSb2 as negative electrode for Na-ion batteries
- Author
-
Moulay Tahar Sougrati, Lorenzo Stievano, Matthieu Toiron, Bernard Fraisse, Laure Monconduit, Ali Darwiche, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)
- Subjects
Battery (electricity) ,Reaction mechanism ,Materials science ,batteries ,Performance ,Analytical chemistry ,Energy Engineering and Power Technology ,chemistry.chemical_element ,Na-ion ,Electrochemistry ,7. Clean energy ,Metal ,Mössbauer spectroscopy ,medicine ,Electrical and Electronic Engineering ,Physical and Theoretical Chemistry ,Negative electrode ,Renewable Energy, Sustainability and the Environment ,Fe Mössbauer spectroscopy ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Carboxymethyl cellulose ,chemistry ,Chemical engineering ,visual_art ,Electrode ,visual_art.visual_art_medium ,Mechanism ,Carbon ,medicine.drug - Abstract
International audience; For the first time, cycling capability and life analysis of the FeSb2/Na battery are tested. Thanks to anappropriate carboxymethyl cellulose/carbon formulation, this electrode exhibits excellent electrochemicalperformances as negative electrode material for Sodium-Ion Batteries (SIB), sustaining areversible capacity exceeding 540 and 440 mAh/g over more than 130 cycles at a current of 36 and300 mA/g, respectively. Such performances overtake those of Sb in terms of cyclability under high rate,one of the best negative electrodes reported to date for SIB. In situ X-ray diffraction and low temperatureM€ossbauer spectroscopy analyses indicate that the reaction mechanism of the first sodiation of FeSb2 isbased on a conversion reaction, leading to the formation of a very efficient Na3Sb/metallic Fe0 nanosizedelectrode with an excellent capacity retention at relatively high rate. The reaction mechanism after thefirst discharge is based on a reversible alloying reaction (2Na3Sb --> 2Sb + 6Na), where iron is no moreinvolved. The role of Fe appears however to be crucial in the excellent cycling performances, likely due tothe increase of the electronic conductivity brought both by its nanosized nature and its homogenousdistribution in the electrode.
- Published
- 2015
33. [Monoarthritis in Neisseria meningitidis: What instructions for contact people?]
- Author
-
Laure, Pouliquen, Anne, Daoudal, Valérie, Rabier, Sylvette, Marleix, Gregory, Lucas, Bernard, Fraisse, and Philippe, Violas
- Subjects
Male ,Meningococcal Infections ,Adolescent ,Arthritis ,Humans ,Female ,Contact Tracing ,Neisseria meningitidis - Published
- 2017
34. Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries
- Author
-
Laure Monconduit, Moulay Tahar Sougrati, Ali Darwiche, Lorenzo Stievano, Bernard Fraisse, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Long cycle ,Materials science ,Performance ,Sodium ,chemistry.chemical_element ,Nanotechnology ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,Electrochemistry ,7. Clean energy ,01 natural sciences ,Na-ion batteries ,lcsh:Chemistry ,chemistry.chemical_compound ,medicine ,Electrode material ,Negative electrode ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Carboxymethyl cellulose ,lcsh:Industrial electrochemistry ,lcsh:QD1-999 ,chemistry ,Chemical engineering ,Carbonate ,Mechanism ,0210 nano-technology ,Faraday efficiency ,lcsh:TP250-261 ,medicine.drug - Abstract
We report significant electrochemical performances promoting SnSb as one of the most promising negative electrode material for rechargeable batteries. Appropriately formulated with the carboxymethyl cellulose binder and cycled in fluoroethylene carbonate containing electrolyte, it could sustain a reversible capacity largely exceeding 525 mAh g−1 over more than 125 cycles at a rate of C/2 (55 mA/g), with a satisfactory coulombic efficiency of more than 97%. To our knowledge, this is actually the longest cycle life ever reported for an electrode material vs. sodium. Keywords: Na-ion batteries, Negative electrode, Mechanism, Performance
- Published
- 2013
35. Operando Mössbauer Spectroscopy Investigation of the Electrochemical Reaction with Lithium in Bronze-Type FeF 3 ·0.33H 2 O
- Author
-
Lorenzo Stievano, Bernard Fraisse, Moulay Tahar Sougrati, Lidia Di Carlo, Donato E. Conte, Nicola Pinna, Humboldt-Universität zu Berlin, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Reaction mechanism ,Materials science ,Cathode materials ,Inorganic chemistry ,chemistry.chemical_element ,Nanoparticle ,Li-ion batteries ,02 engineering and technology ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,law.invention ,law ,Mössbauer spectroscopy ,Physical and Theoretical Chemistry ,57Fe Mössbauer spectroscopy ,Graphene ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Amorphous solid ,General Energy ,chemistry ,Rutile ,Lithium ,Conversion reaction ,0210 nano-technology - Abstract
International audience; The electrochemical reaction of bronze-type FeF3·0.33H2O, synthesized via a simple room-temperature solution route, with lithium was investigated by operando Mössbauer spectroscopy and X-ray diffraction. The two techniques revealed a complex electrochemical mechanism where the pristine crystalline compound is gradually transformed into an amorphous material containing nanodomains of a FeF2-like rutile structure mixed to iron nanoparticles. Upon charge, two steps are dominating the electrochemical behavior: partial reformation of the initial bronze structure and oxidation to Fe(III). This reaction mechanism, however, is not constant, and noticeable variation can be observed during galvanostatic cycling (up to 55 cycles) until eventually an amorphous material containing rutile nanodomains composes the final active electrode. The material performance, under the form of a fluoride/graphene oxide composite, is also assessed with respect to the long-term effect of the depth of first discharge.
- Published
- 2016
36. Reinstating lead for high-loaded efficient negative electrode forrechargeable sodium-ion battery
- Author
-
Ali Darwiche, Romain Dugas, Bernard Fraisse, Laure Monconduit, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), and Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)
- Subjects
Inorganic chemistry ,Carbon Additive ,Analytical chemistry ,Energy Engineering and Power Technology ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,chemistry.chemical_compound ,Electrical and Electronic Engineering ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,Renewable Energy, Sustainability and the Environment ,Sodium-ion battery ,Diglyme ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Anode ,chemistry ,13. Climate action ,Electrode ,0210 nano-technology ,Capacity loss ,Faraday efficiency - Abstract
Due to its weight and toxicity, Pb is usually not considered as possible anode for Li- and Na-ion (NIBs) batteries. Nevertheless the toxicity is related to specific applications and its recycling is more than 99% which is one of the highest recycling rates on the planet where no other power source is utilized in more applications with such sustainability. For this reason, we have investigated micrometric lead particles as electrode for NIBs in an ether-based electrolyte (1 M NaPF6 in diglyme). The cyclability, coulombic efficiency and rate capability of lead were unexpected. A high loaded lead electrode with 98%wt of Pb and only 1% of carbon additive showed i) a capacity retention of 464 mA h/g after 50 cycles with only 1.5% of capacity loss, which represents a high volumetric capacity of 5289 mA h/cm3 due to the high density of Pb and ii) a very interesting capacity retention even at high current rate (1950 mA/g). In situ XRD study confirmed a sodiation–desodiation process in four steps. Preliminary tests in Pb//Na3V2(PO4)2F3 full cells showed promising results demonstrating that Pb could be a practical candidate for future high energy density Na-ion batteries with an efficient sodiated or non sodiated positive electrode.
- Published
- 2016
37. A combined Mössbauer spectroscopy and x-ray diffraction operando study of Sn-based composite anode materials for Li-ion accumulators
- Author
-
Donato E. Conte, Josette Olivier-Fourcade, Lorenzo Stievano, Sophie Cassaignon, Jean-Claude Jumas, Bernard Fraisse, Mathieu Artus, Mohamed Mouyane, Christian Jordy, Patrick Willmann, Moulay Tahar Sougrati, K. Driezen, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Centre National d'Études Spatiales [Toulouse] (CNES), SAFT [Bordeaux], Société des accumulateurs fixes et de traction (SAFT), Laboratoire de Chimie de la Matière Condensée de Paris (site Paris VI) (LCMCP (site Paris VI)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Group Research, UMICORE, UMICORE, and Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Composite number ,Intermetallic ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Electrochemical cell ,Electrochemistry ,General Materials Science ,Ceramic ,Electrical and Electronic Engineering ,Metallurgy ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Anode ,Amorphous solid ,chemistry ,Chemical engineering ,visual_art ,X-ray crystallography ,visual_art.visual_art_medium ,0210 nano-technology ,Tin - Abstract
International audience; The reaction mechanisms of Li with Sn/BPO4 composites to be used as negative electrode materials for Li-ion batteries were studied during electrochemical cycling by operando Mössbauer spectroscopy and X-ray diffraction using a specifically conceived in situ electrochemical cell. The starting composites consist of three main components: β-Sn particles as the electrochemically active species, an inactive matrix of BPO4 and an amorphous SnII-borophosphate interfacial phase linking the two former components and improving the cohesion of the composite. During the first discharge, the latter Sn(II) species are first reduced to zerovalent tin forming Li-poor Li-Sn alloys. After its complete reduction, the reaction of Li continues with β-Sn leading to Li-Sn alloys increasingly rich in Li, with a final composition between those of Li7Sn2 and Li13Sn5. X-ray diffraction shows a progressive loss of long range order of the composites with the suppression of the diffraction peaks of the initial β-Sn and the formation of an ill-defined mixture of Li-Sn alloys. The evolution of this mechanism is investigated on going from a reference Sn/BPO4 composite prepared by conventional ceramic methods with common micrometric BPO4 to a new improved material prepared by carbothermal synthesis starting from nanometric BPO4. With the new composite prepared by carbothermal synthesis, a significant improvement of the reversible capacity at the first cycle is obtained together with a slight improvement of the cycling behaviour. An additional improvement can be obtained by increasing the rate of the first discharge, and thus hampering the formation of the thermodynamically stable LiSn intermetallic.
- Published
- 2012
38. Évaluation de paramètres échographiques comme facteurs de risque de récidive chez des patients traités de pieds bots varus équin par la méthode de Ponseti
- Author
-
Antoine Josse, Servane-Le-Lez Soquet, Catherine Treguier, Kamal Chouklati, Bernard Fraisse, Sylvette Marleix, Gregory Lucas, Pierre Darnault, and Philippe Violas
- Subjects
Orthopedics and Sports Medicine ,Surgery - Published
- 2017
39. Tetraaqua-bis(3-hydroxy-4-nitrobenzoato) Co(II) and Ni(II) complexes and diaqua-bis(2-hydroxy-4-methoxybenzoato) Zn(II) complex: crystal structure and thorough metal-coordination investigation
- Author
-
Véronique Brumas, Didier Desmaële, Emma Dichi, Mehrez Sghaier, Marina M.L. Fiallo, Alain Tomas, Georges Morgant, Bernard Fraisse, and Jean d'Angelo
- Subjects
chemistry.chemical_classification ,Aqueous solution ,Denticity ,Stereochemistry ,Salt (chemistry) ,Crystallographic data ,Crystal structure ,Metal ,Crystallography ,chemistry ,Covalent bond ,visual_art ,Materials Chemistry ,visual_art.visual_art_medium ,Physical and Theoretical Chemistry - Abstract
Reactions of Co(II) and Ni(II) salts with the monosodium salt of 3-hydroxy-4-nitrobenzoic acid (3) in aqueous solution resulted in isomorphous covalent complexes 3C and 3D, of centrosymmetric geometries. In similar conditions, 2-hydroxy-4-methoxybenzoic acid (5) led to the covalent Zn(II) complex 5A, exhibiting a marked dissymmetric geometry. The present crystallographic data with structural data for a series of closely related metal complexes previously reported allow a tentative rationalization of the solid-state architecture of such complexes. The dissymmetry in 5A was interpreted on the basis of a mixed (monodentate and bidentate) metal-ligation mode and a pyramidal coordination at the metal.
- Published
- 2011
40. Experimental Electron Density Study of Tetrakis-μ-(acetylsalicylate)dicopper(II): a Polymeric Structure with Cu···Cu Short Contacts
- Author
-
Gabriel Merino, Miguel A. Méndez-Rojas, Bernard Fraisse, Aarón Pérez-Benítez, Nour-Eddine Ghermani, and Nouzha Bouhmaida
- Subjects
Models, Molecular ,Ligand field theory ,Diffraction ,Electron density ,Polymers ,chemistry.chemical_element ,Ligands ,010402 general chemistry ,01 natural sciences ,Inorganic Chemistry ,symbols.namesake ,Coordination Complexes ,Computational chemistry ,Physical and Theoretical Chemistry ,Aspirin ,010405 organic chemistry ,Chemistry ,Copper ,0104 chemical sciences ,Bond length ,Crystallography ,symbols ,Quantum Theory ,Electron configuration ,van der Waals force ,Multipole expansion - Abstract
The electron density, its topological features, and the electrostatic potential of tetrakis-mu-(acetylsalicylate)dicopper(II), Cu[C(9)H(7)O(4)](2), have been derived from an accurate high-resolution diffraction experiment at 100 K. This complex exhibits a polymeric structure involving one acetyl oxygen atom as a bridge in the solid state. Only van der Waals interactions between the polymeric chains are observed. The copper cation is octahedrally coordinated with five oxygen atoms of the aspirinate ligands and one adjacent Cu with short Cu...Cu contact distances in the range of 2.6054(1) A. The Cu-O bond lengths are equal to 1.96 A except the apical one which is 2.2183(7) A. The multipole refinements were carried out using the Hansen-Coppens model coded in the MOPRO computer program. Starting from the 3d(10)4s(1) copper electron configuration, the electron density analysis and Cu d-orbital populations reveal that the observed configuration is close to being [Ar]3d(9)4s(1). As expected from the ligand field theory, the most depopulated 3d-orbital is the d(x(2)-y(2)) (1.17 e) one with lobes pointing toward the carboxylic oxygen atoms. Conversely, the d(z(2)) is the most populated orbital for a z-axis directed along the Cu...Cu bond. The atomic charges were derived from a kappa-refinement and yielded a metal net charge of +1.20(3) e. Deficits of +0.72(6) and +0.59(7) e are obtained for the acetyl carbon atoms of the aspirinate ligands, those involved in the drug activity of aspirin. Comparisons are made to the results of our previous work on the zinc-aspirinate complex.
- Published
- 2010
41. New preparation by sublimation at low pressure of glycine and physicochemical study
- Author
-
E. Dichi, Mehrez Sghaier, François Bonhomme, Bernard Fraisse, Gérard Keller, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Laboratoire Structures, Propriétés et Modélisation des solides (SPMS), Institut de Chimie du CNRS (INC)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Direction de la recherche, Société des accumulateurs fixes et de traction (SAFT), Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), École pratique des hautes études (EPHE), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UR226
- Subjects
Thermogravimetric analysis ,Aqueous solution ,Chemistry ,Mechanical Engineering ,Inorganic chemistry ,Metals and Alloys ,Analytical chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,0104 chemical sciences ,Thermogravimetry ,Differential scanning calorimetry ,Mechanics of Materials ,Materials Chemistry ,Molecule ,Sublimation (phase transition) ,0210 nano-technology ,Thermal analysis - Abstract
International audience; A physical sublimation process, generally used for the metals, has been applied to an amino acid, glycine. When this molecule is submitted by this physical process, it could acquire new chemical and physical properties so new therapeutic activities. We have studied the differences of the two glycine forms in solid state and in aqueous solution using the physical and chemical analysis. This study has been carried out with the following techniques: differential scanning calorimeter (DSC), thermogravimetric analyses (TG), thermostimulated current (TSC) and electrochemical impedance.
- Published
- 2008
42. Crystal structures of two (3-hydroxy-4-nitrobenzoato) complexes of magnesium(II): Ionic entities stabilized by stacking interactions and extensive hydrogen bonding
- Author
-
Didier Desmaële, Bernard Fraisse, Mehrez Sghaier, Alain Tomas, Véronique Brumas, Georges Morgant, Jean d'Angelo, Emma Dichi, Marina M.L. Fiallo, Pascal Retailleau, Institut de Chimie des Substances Naturelles (ICSN), and Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Aqueous solution ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,010405 organic chemistry ,Chemistry ,Ligand ,Hydrogen bond ,Stacking ,Supramolecular chemistry ,Ionic bonding ,Crystal structure ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences ,Inorganic Chemistry ,Crystallography ,chemistry.chemical_compound ,Materials Chemistry ,Carboxylate ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS - Abstract
The crystal structures of two Mg(II) complexes of 3-hydroxy-4-nitrobenzoic acid have been reported. The first complex, 2 (C14H20N2O16Mg), consists of ionic entities comprising one hexaaquamagnesium cation and two organic carboxylate anions. The second complex, 3 (C7H15NO11Mg) consists of zwitterionic entities comprising one organic ligand per Mg atom. In both cases, the complexes are linked through an extensive hydrogen bonding network. The 3D supramolecular architectures of these complexes are also stabilized by two types of stacking interactions. An interesting interconversion between the two complexes was observed in aqueous solution.
- Published
- 2008
43. Topological Features of Both Electron Density and Electrostatic Potential in the Bis(thiosemicarbazide)zinc(II) Dinitrate Complex
- Author
-
Anne Spasojevic de Biré, Goran A. Bogdanović, Nouzha Bouhmaida, Sladjana B. Novaković, Nour-Eddine Ghermani, Bernard Fraisse, Laboratory of Theoretical Physics and Condensed Matter Physics [Vinča Institute], Vinča Institute of Nuclear Sciences, University of Belgrade [Belgrade]-University of Belgrade [Belgrade], Laboratoire Structures, Propriétés et Modélisation des solides (SPMS), Institut de Chimie du CNRS (INC)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Physico-chimie, pharmacotechnie, biopharmacie (PCPB), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Sciences des Matériaux (LSM), Faculté des Sciences Semlalia [Marrakech], Université Cadi Ayyad [Marrakech] (UCA)-Université Cadi Ayyad [Marrakech] (UCA), and CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Models, Molecular ,Hydrogen bonding ,Electron density ,Static Electricity ,chemistry.chemical_element ,Electrons ,02 engineering and technology ,Zinc ,Electron ,Crystallography, X-Ray ,Ligands ,010402 general chemistry ,Kinetic energy ,Topology ,01 natural sciences ,Thiosemicarbazide ,Static electricity ,Organometallic Compounds ,[CHIM.CRIS]Chemical Sciences/Cristallography ,Physical and Theoretical Chemistry ,Experimental charge density ,Nitrates ,Hydrogen bond ,021001 nanoscience & nanotechnology ,Multipole refinement ,Potential energy ,Semicarbazides ,0104 chemical sciences ,Models, Chemical ,chemistry ,Zinc complex ,0210 nano-technology ,Valence electron ,Topological analysis - Abstract
International audience; The experimental electron density of bis(tiosemicarbazide)zinc(II) dinitrate complex, [Zn(CH5N3S)2](NO3)2, was studied. The Hansen-Coppens multipole model was used to extract the electron density from high resolution X-ray diffraction data collected at 100 K. Careful strategies were designed for the electron density refinements regarding the charge transfer between the anionic and cationic parts of the complex. Particular attention was also paid to the treatment of the electron density of the zinc atom interacting with two thiosemicarbazide ligands in a tetrahedral coordination. Nevertheless, the filled 3d valence shell of Zn was found unperturbed and only the 4s shell was engaged in the metal-ligand interaction. Topological properties of both electron density and electrostatic potential, including kinetic and potential energy densities, and atomic charges were reported in order to quantify a metal-ligand complex with particular Zn-S and Zn-N bonds and hydrogen bonding features. Chemical activities were screened through the molecular surface on which the 3D electrostatic potential function was projected. The experimental results were confronted to those obtained from gas phase quantum calculations and a good agreement was reached between these two approaches. Finally, among other electrostatic potential critical points, the values at the maxima corresponding to the nuclear sites were used as indices of the hydrogen bonding capacity of the thiosemicarbazide ligand.
- Published
- 2007
44. Experimental Charge Density Evidence for the Existence of High Polarizability of the Electron Density of the Free Electron Pairs on the Sulfur Atom of the Thioureido Group, NH−C(S)−NH2, Induced by N−H···S and C−H···S Interactions
- Author
-
Sladjana B. Novaković, Goran A. Bogdanović,† and, Bernard Fraisse, and Anne Spasojevic de Biré
- Subjects
Electron density ,Stereochemistry ,Hydrogen bond ,Dimer ,chemistry.chemical_element ,Charge density ,General Chemistry ,Crystal structure ,Condensed Matter Physics ,Sulfur ,3. Good health ,Crystal ,Crystallography ,chemistry.chemical_compound ,chemistry ,Polarizability ,General Materials Science - Abstract
The experimental charge density study of salicylaldehyde thiosemicarbazone (SalTSC) has been performed. The analysis of the crystal packing revealed that the sulfur atom is simultaneously engaged in six hydrogen-bonding interactions, two of the N−H···S and four of the C−H···S type. The strongest hydrogen bond, N2−H2n···S, leads to a centrosymmetric dimer. It has been established that the deformation density of the free electron pairs on the sulfur atom is inhomogeneously distributed within a torus. A relationship found between the deformation of the torus and the space directionality of the surrounding donor groups suggests that the sulfur atom of the thioureido moiety easily adjusts to the environment in order to increase the number of stabilizing contacts. A CSD study of the compounds containing a thioureido fragment, N−C(S)−N, confirmed the experimental results for SalTSC, i.e., about 60% of the 835 analyzed crystal structures form a dimer trough N−H···S interactions, whereas in about 50% of crystal st...
- Published
- 2007
45. Synergistic Effects of Ge and Si on the Performances and Mechanism of the GexSi1−x Electrodes for Li Ion Batteries
- Author
-
Laure Monconduit, Frédérique Cunin, Bernard Fraisse, David Duveau, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)
- Subjects
Materials science ,Silicon ,Scanning electron microscope ,General Chemical Engineering ,Analytical chemistry ,chemistry.chemical_element ,Germanium ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Electrochemistry ,7. Clean energy ,symbols.namesake ,chemistry ,Electrode ,Materials Chemistry ,symbols ,Ionic conductivity ,Raman spectroscopy ,ComputingMilieux_MISCELLANEOUS ,Solid solution - Abstract
While silicon is attractive due to its high capacity, germanium possesses a superior electronic and ionic conductivity, and is able to support much higher cycle rates. In the present paper, we investigate the electrochemical performances of GexSi1–x-based electrodes with x = 0, 0.25, 0.5, 0.75, and 1. The GexSi1–x samples are easily prepared by short ball milling. X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy–energy-dispersive X-ray spectrometry confirm that Si/Ge solid solutions are obtained with different ratios. We show that appropriate formulations of GexSi1–x electrodes can produce excellent cycling performances, with an increased capacity retention compared to that of Si-based electrodes only, and with higher capacity than that of Ge-based electrodes cycled in the same conditions. For Ge0.1Si0.9, a capacity of 1138 (mA h)/g is retained after 50 cycles, and is stabilized around 1020 (mA h)/g after 100 cycles. Moreover, a limited irreversible capacity is lost on the fir...
- Published
- 2015
46. The Quest for Polysulfides in Lithium–Sulfur Battery Electrolytes: An Operando Confocal Raman Spectroscopy Study
- Author
-
Julien Fullenwarth, Patrik Johansson, Julien Hannauer, Lorenzo Stievano, Johan Scheers, Bernard Fraisse, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Department of Applied Physics, Chalmers University of Technology [Göteborg], Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), and Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
inorganic chemicals ,Chemistry ,Confocal ,Analytical chemistry ,Battery electrolyte ,chemistry.chemical_element ,Lithium–sulfur battery ,02 engineering and technology ,Electrolyte ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Sulfur ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Electrochemical cell ,symbols.namesake ,symbols ,Physical and Theoretical Chemistry ,0210 nano-technology ,Raman spectroscopy ,Confocal raman spectroscopy - Abstract
International audience; Confocal Raman spectra of a lithium–sulfur battery electrolyte are recorded operando in a depth-of-discharge resolved manner for an electrochemical cell with a realistic electrolyte/sulfur loading ratio. The evolution of various possible polysulfides is unambiguously identified by combining Raman spectroscopy data with DFT simulations.
- Published
- 2015
47. An Original Supramolecular Helicate from a Bipyridine–Bipyrazine Ligand Strand and Ni II by Self‐Assembly
- Author
-
François Montaigne, Nour-Eddine Ghermani, Bernard Fraisse, Julien Mathieu, Alain Marsura, Daniel Lacour, Laboratoire Structures, Propriétés et Modélisation des solides (SPMS), CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Physico-chimie, pharmacotechnie, biopharmacie (PCPB), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Structure et Réactivité des Systèmes Moléculaires Complexes (SRSMC), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique des matériaux (LPM), Université Henri Poincaré - Nancy 1 (UHP)-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Henri Poincaré - Nancy 1 (UHP)
- Subjects
suprarnolecular chemistrY ,010405 organic chemistry ,Stereochemistry ,Ligand ,Supramolecular chemistry ,self assembly ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences ,Inorganic Chemistry ,Crystal ,nickel ,Crystallography ,Bipyridine ,chemistry.chemical_compound ,Paramagnetism ,N ligands ,Octahedron ,chemistry ,Molecule ,magnetic properties ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Self-assembly - Abstract
A new discrete supramolecular pseudo-helicate has been obtained from a saturated heterotopic methylbipyrazyl–methylbipyridyl ligand strand and NiCl2. The X-ray structure of the dinuclear complex shows the 2-oxapropylene bridge oxygen atoms are engaged in coordination to the octahedral metal centre and a selective ligand inter-strand orientation is promoted in the complex. The crystal packing shows a perfect regular linear arrangement of the asymmetric units giving a packing of interacting molecules having well-defined rectangular and polygonal open channels. Although a paramagnetic behaviour is observed above 10 K, below this temperature a significant deviation of this behaviour suggests the presence of an NiII–NiII magnetic coupling. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)
- Published
- 2005
48. Experimental/Theoretical Electrostatic Properties of a Styrylquinoline-Type HIV-1 Integrase Inhibitor and Its Progenitors
- Author
-
B. Courcot, Fatima Zouhiri, Nour-Eddine Ghermani, Jean-Michel Gillet, Didier Desmaële, Bernard Fraisse, Jean d'Angelo, Delphine Firley, Laboratoire Structures, Propriétés et Modélisation des solides (SPMS), Institut de Chimie du CNRS (INC)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Molécules bioactives, conception, isolement et synthèse (MBCIS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie, pharmacotechnie, biopharmacie (PCPB), and Bioalliance Pharma
- Subjects
Models, Molecular ,Magnetic Resonance Spectroscopy ,Ab initio ,BINDING MODE ,HIV Integrase ,01 natural sciences ,Active center ,Molecular dynamics ,X-Ray Diffraction ,ANTIRETROVIRAL THERAPY ,STABLE COMPLEX ,Materials Chemistry ,chemistry.chemical_classification ,Carbon Isotopes ,0303 health sciences ,Molecular Structure ,biology ,ACTIVE-SITE ,Surfaces, Coatings and Films ,Integrase ,ESCHERICHIA-COLI ,Quinolines ,Crystallization ,Oxidation-Reduction ,REPLICATION INHIBITORS ,VIRAL-DNA ,STRUCTURAL BASIS ,Electron density ,Stereochemistry ,Static Electricity ,Integrase Inhibitors ,010402 general chemistry ,Sensitivity and Specificity ,Structure-Activity Relationship ,03 medical and health sciences ,Predictive Value of Tests ,Ab initio quantum chemistry methods ,Physical and Theoretical Chemistry ,030304 developmental biology ,IN-VITRO ,0104 chemical sciences ,Enzyme Activation ,Enzyme ,Models, Chemical ,chemistry ,Docking (molecular) ,DNA-POLYMERASE-BETA ,biology.protein ,Quantum Theory ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] - Abstract
We have established that polyhydroxylated styrylquinolines are potent inhibitors of HIV-1 integrase (IN). Among them, we have identified (E)-8-hydroxy-2-[2-(4,5-dihydroxy-3-methoxyphenyl)-ethenyl]-7-quinoli-necarboxylic acid (1) as a promising lead. Previous molecular dynamics simulations and docking procedures have shown that the inhibitory activity involves one or two metal cations (Mg2+), which are present in the vicinity of the active center of the enzyme. However, such methods are generally based on a force-field approach and still remain not as reliable as ab initio calculations with extended basis sets on the whole system. To go further in this area, the aim of the present study was to evaluate the predictive ability of the electron density and electrostatic properties in the structure-activity relationships of this class of HIV-1 antiviral drugs. The electron properties of the two chemical progenitors of 1 were derived from both high-resolution X-ray diffraction experiments and ab initio calculations. The twinning phenomenon and solvent disorder were observed during the crystal structure determination of 1. Molecule 1 exhibits a planar s-trans conformation, and a zwitterionic form in the crystalline state is obtained. This geometry was used for ab initio calculations, which were performed to characterize the electronic properties of 1. The electron densities, electrostatic potentials, and atomic charges of 1 and its progenitors are here compared and analyzed. The experimental and theoretical deformation density bond peaks are very comparable for the two progenitors. However, the experimental electrostatic potential is strongly affected by the crystal field and cannot straightforwardly be used as a predictive index. The weak difference in the theoretical electron densities between 1 and its progenitors reveals that each component of 1 conserves its intrinsic properties, an assumption reinforced by a C-13 NMR study. This is also shown through an excellent correlation of the atomic charges for the common fragments. The electrostatic potential minima in zwitterionic and nonzwitterionic forms of 1 are discussed in relation with the localization of possible metal chelation sites.
- Published
- 2005
49. 7-Carboxylato-8-hydroxy-2-methylquinolinium monohydrate and 7-carboxy-8-hydroxy-2-methylquinolinium chloride monohydrate at 100 K
- Author
-
Jean d'Angelo, Fatima Zouhiri, Bernard Fraisse, Nour-Eddine Ghermani, Anne Spasojevic de Biré, Didier Desmaële, Delphine Firley, Laboratoire Structures, Propriétés et Modélisation des solides (SPMS), Institut de Chimie du CNRS (INC)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Bioalliance Pharma, Molécules bioactives, conception, isolement et synthèse (MBCIS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), and Physico-chimie, pharmacotechnie, biopharmacie (PCPB)
- Subjects
STYRYLQUINOLINES ,Carboxylic acid ,Carboxylic Acids ,Crystal structure ,Crystallography, X-Ray ,010403 inorganic & nuclear chemistry ,HIV-1 INTEGRASE ,01 natural sciences ,Medicinal chemistry ,Chloride ,General Biochemistry, Genetics and Molecular Biology ,[CHIM.CRIS]Chemical Sciences/Cristallography ,medicine ,Molecule ,CRYSTAL-STRUCTURE ,chemistry.chemical_classification ,010405 organic chemistry ,Chemistry ,Hydrogen bond ,Quinolinium Compounds ,Intermolecular force ,Water ,Space group ,Hydrogen Bonding ,General Medicine ,3. Good health ,0104 chemical sciences ,Crystallography ,Intramolecular force ,REPLICATION ,ACID ,INHIBITORS ,medicine.drug - Abstract
International audience; Both 7-carboxylato-8-hydroxy-2-methylquinolinium monohydrate, C11H9NO3.H2O, (1), and 7-carboxy-8-hydroxy-2-methylquinolinium chloride monohydrate, C11H10NO3+.Cl-.H2O, (11), crystallize in the centrosymmetric P (1) over bar space group. Both compounds display an intramolecular O-H ... O hydrogen bond involving the hydroxy group; this hydrogen bond is stronger in (1) due to its zwitterionic character [O ... O = 2.4449 (11) Angstrom in (1) and 2.5881 (12) Angstrom in (11)]. In both crystal structures, the HN+ group participates in the stabilization of the structure via intermolecular hydrogen bonds with water molecules [N ... O = 2.7450 (12) Angstrom in (1) and 2.8025 (14) Angstrom in (11)]. In compound (11), a hydrogen-bond network connects the Cl- anion to the carboxylic acid group [Cl ... O = 2.9641 (11) Angstrom] and to two water molecules [Cl ... O = 3.1485 (10) and 3.2744 (10) Angstrom]
- Published
- 2005
50. MBE growth of InAs/InAsSb/AlAsSb structures for mid-infrared lasers
- Author
-
Pierre Grech, E. Hulicius, A. Wilk, Jiří Oswald, M. El Gazouli, T. Šimeček, Bernard Fraisse, André Joullié, Guilhem Boissier, Philippe Christol, Frédéric Genty, Centre d'Electronique et de Micro-optoélectronique de Montpellier (CEM2), Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS), Institute of Physics [Prague], and Czech Academy of Sciences [Prague] (CAS)
- Subjects
Sticking coefficient ,Materials science ,Reflection high-energy electron diffraction ,02 engineering and technology ,01 natural sciences ,law.invention ,Inorganic Chemistry ,law ,0103 physical sciences ,Materials Chemistry ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS ,Quantum well ,Diode ,010302 applied physics ,business.industry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Laser ,Cladding (fiber optics) ,[SPI.TRON]Engineering Sciences [physics]/Electronics ,Electron diffraction ,Optoelectronics ,0210 nano-technology ,business ,Molecular beam epitaxy - Abstract
The growth by solid source molecular beam epitaxy (MBE) of type-II InAsSb/InAs multi-quantum well laser diodes on InAs has been studied. Strained InAsSb/InAs quantum wells were sandwiched between two AlAs 0.16 Sb 0.84 2 μm-thick cladding layers, lattice-matched to InAs. The precise control of the composition of the thick AlAsSb ternary alloy was obtained using a quasi-stoichiometric growth (QSG) method, which requires a determination of the incorporation rate of each element. This rate was obtained from reflection high-energy electron diffraction (RHEED) intensity oscillations. Alloys composition was entirely controlled by Sb 2 flux, suggesting a sticking coefficient close to unity. Mesa-stripe laser diodes processed from the epitaxied structures operated at 3.5 μm in pulsed regime up to 220 K, with a threshold current density of 130 A/cm 2 at 90 K and a peak optical power efficiency of 50 mW/A/facet.
- Published
- 2001
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.