33 results on '"Bragazza, Luca"'
Search Results
2. Effects of sphagnum leachate on competitive sphagnum microbiome depend on species and time
- Author
-
Hamard, Samuel, Robroek, Bjorn J. M., Allard, Pierre-Marie, Signarbieux, Constant, Zhou, Shuaizhen, Saesong, Tongchai, de Baaker, Flore, Buttler, Alexandre, Chiapusio, Geneviève, Wolfender, Jean-Luc, Bragazza, Luca, and Jassey, Vincent E. J.
- Subjects
allelopathy and allelochemicals ,metabolomics ,microbial networks ,microbial respiration and biomass ,peatland ,plant competition ,plant-exudates ,soil food-web - Abstract
Plant specialized metabolites play an important role in soil carbon (C) and nutrient fluxes. Through anti-microbial effects, they can modulate microbial assemblages and associated microbial-driven processes, such as nutrient cycling, so to positively or negatively cascade on plant fitness. As such, plant specialized metabolites can be used as a tool to supplant competitors. These compounds are little studied in bryophytes. This is especially notable in peatlands where Sphagnum mosses can dominate the vegetation and show strong interspecific competition. Sphagnum mosses form carpets where diverse microbial communities live and play a crucial role in Sphagnum fitness by regulating C and nutrient cycling. Here, by means of a microcosm experiment, we assessed to what extent moss metabolites of two Sphagnum species (S. fallax and S. divinum) modulate the competitive Sphagnum microbiome, with particular focus on microbial respiration. Using a reciprocal leachate experiment, we found that interactions between Sphagnum leachates and microbiome are species-specific. We show that both Sphagnum leachates differed in compound richness and compound relative abundance, especially sphagnum acid derivates, and that they include microbial-related metabolites. The addition of S. divinum leachate on the S. fallax microbiome immediately reduced microbial respiration (-95%). Prolonged exposition of S. fallax microbiome to S. divinum leachate destabilized the food web structure due to a modulation of microbial abundance. In particular, leachate addition decreased the biomass of testate amoebae and rotifers but increased that of ciliates. These changes did not influence microbial CO2 respiration, suggesting that the structural plasticity of the food web leads to its functional resistance through the replacement of species that are functionally redundant. In contrast, S. fallax leachate neither affected S. divinum microbial respiration, nor microbial biomass. We, however, found that S. fallax leachate addition stabilized the food web structure associated to S. divinum by changing trophic interactions among species. The differences in allelopathic effects between both Sphagnum leachates might impact their competitiveness and affect species distribution at local scale. Our study further paves the way to better understand the role of moss and microbial specialized metabolites in peatland C dynamics.
- Published
- 2019
3. Alien plant species distribution in the European Alps: influence of species' climatic requirements
- Author
-
Dainese, Matteo, Kuehn, Ingolf, and Bragazza, Luca
- Subjects
Climate matching ,Urbanization ,Temperature ,Disturbance ,Mountain ecosystems ,Assemblage differentiation - Abstract
The paper provides the first estimate of the role of abiotic and anthropogenic variables driving both alien plant species richness and composition covering the whole region of the European Alps. To establish and spread in a new area, alien plants must be able to tolerate the prevailing climatic conditions. We therefore tested the hypothesis that climatic requirements modified by bioclimatic origin and elevational distribution influence the distribution of alien plants in the Alps. Despite most alien plant species showing a relatively restricted distribution in the Alps, some regions, however, were already more strongly invaded. Most of these species were adapted to warmer conditions, probably constrained by climatic factors. Environmental heterogeneity was the most important predictor of alien plant species richness, followed by anthropogenic disturbance. Due to the political/artificial delineation of the administrative districts in the Alps (i.e., ignoring ecological conditions) we did not find a direct influence of climatic constraints on alien distribution. Anyway, northern Holarctic alien species showed a broader climatic tolerance and the capability to grow across a wide environmental range. Our results also reveal a strong influence of human pressure on warmer tropical species, despite their low adaptability to anthropogenic habitats. To this aim, managers would profit from early warnings to prevent future invasions. Considering bioclimatic origin, our study can aid in identifying potentially invasive species in a more regional setting.
- Published
- 2014
4. Litter- and ecosystem-driven decomposition under elevated CO2 and enhanced N deposition in a Sphagnum peatland
- Author
-
Siegenthaler, Andy, Buttler, Alexandre, Bragazza, Luca, van der Heijden, Edwin, Grosvernier, Philippe, Gobat, Jean-Michel, and Mitchell, Edward A. D.
- Subjects
reproductive and urinary physiology - Abstract
Peatlands represent massive global C pools and sinks. Carbon accumulation depends on the ratio between net primary production and decomposition, both of which can change under projected increases of atmospheric CO2 and N deposition. The decomposition of litter is influenced by 1) the quality of the litter, and 2) the microenvironmental conditions in which the litter decomposes. This study aims at experimentally testing the effects of these two drivers in the context of global change. We studied the in situ litter decomposition from three common peatland species (Eriophorum vaginatum, Polytrichum strictum and Sphagnum fallax) collected after one year of litter production under pre-treatment conditions (elevated CO2: 560 ppm or enhanced N: 3 g m−2 y−1 NH4NO3) and decomposed the following year under treatment conditions (same as pre-treatment). By considering the cross-effects between pre-treatments and treatments, we distinguished between the effects on mass loss of 1) the pre-treatment-induced litter quality and 2) the treatment conditions under which the litters were decomposing. The combination between CO2 pre-treatment and CO2 treatment reduced Polytrichum decomposition by −24% and this can be explained by litter quality-driven decomposition changes brought by the pre-treatment. CO2 pre-treatment reduced Eriophorum litter quality, although this was not sufficient to predict decomposition. The N addition pre-treatment reduced the decomposition of Eriophorum, due to enhanced lignin and soluble phenols concentrations in the initial litter, and reduced litter-driven losses of starch and enhanced litter-driven losses of soluble phenols. While decomposition indices based on initial litter quality provide a broad explanation of quantitative and qualitative decomposition, they can only be taken as first approximations. Indeed, the microbial ATP activity, the litter N loss and resulting litter quality, were strongly altered irrespective of the compounds' initial concentration and by means of processes that occurred independently of the initial litter-qualitative changes. The experimental design was valuable to assess litter- and ecosystem-driven decomposition pathways simultaneously or independently. The ability to separate these two drivers makes it possible to attest the presence of litter-qualitative changes even without any litter biochemical determinations, and shows the screening potential of this approach for future experiments dealing with multiple plant species.
- Published
- 2010
5. Testate Amoebae (Protista) Communities in Hylocomium splendens (Hedw.) B.S.G. (Bryophyta): Relationships with Altitude, and Moss Elemental Chemistry
- Author
-
Mitchell, E. A. D., Bragazza, Luca, and Gerdol, Renato
- Abstract
We studied the testate amoebae in the moss Hylocomium splendens along an altitudinal gradient from 1000 to 2200 m asl. in the south-eastern Alps of Italy in relation to micro- and macro-nutrient content of moss plants. Three mountainous areas were chosen, two of them characterised by calcareous bedrock, the third by siliceous bedrock. A total of 25 testate amoebae taxa were recorded, with a mean species richness of 9.3 per sampling plot. In a canonical correspondence analysis, 63.1% of the variation in the amoebae data was explained by moss tissue chemistry, namely by C, P, Ca, Mg, Al, Fe, and Na content and a binary site variable. We interpreted this result as an indirect effect of moss chemistry on testate amoebae through an influence on prey organisms. Although two species responded to altitude, there was no overall significant relationship between testate amoebae diversity or community structure and altitude, presumably because our sampling protocol aimed at minimizing the variability due to vegetation types and soil heterogeneity. This suggests that previous evidence of altitudinal or latitudinal effects on testate amoebae diversity may at least in part be due to a sampling bias, namely differences in soil type or moss species sampled.
- Published
- 2010
6. Seasonal variation in nitrogen isotopic composition of bog plant litter during three years of field decomposition
- Author
-
Bragazza, Luca, Siffi, C., Iacumin, P., and Gerdol, Renato
- Subjects
Litter C/N quotient ,Decomposition ,Sphagnum ,Peatland ,Vascular plants ,δ15N ,Italian Alps - Published
- 2010
7. A climatic threshold triggers the die-off of peat mosses during an extreme heatwave
- Author
-
Bragazza, Luca
- Subjects
Bogs ,climate warming ,drought ,heat wave ,Italian Alps ,moss desiccation ,Sphagnum ,water stress - Published
- 2008
8. Heatwave 2003: high summer temperature, rather than experimental fertilization, affects vegetation and carbon dioxide exchange in an alpine bog
- Author
-
Gerdol, Renato, Bragazza, Luca, and Brancaleoni, Lisa
- Subjects
climate change ,decomposition ,photosynthesis ,nutrient ,peat ,atmospheric nitrogen deposition, climate change, decomposition, gas exchange, nutrient, peat, photosynthesis, respiration ,atmospheric nitrogen deposition ,gas exchange ,respiration - Published
- 2008
9. Decomposability, nutrient release and isotopic changes in vascular plant and Sphagnum litter
- Author
-
Bragazza, Luca, Siffi, Chiara, and Gerdol, Renato
- Published
- 2007
10. Increasing nitrogen deposition and peat decomposition in European bogs: from C sinks to C sources?
- Author
-
Bragazza, Luca and Freeman, C.
- Published
- 2006
11. A comparison of heavy metal concentrations in bog waters and in the moss Hylocomium splendens: similar conclusions on atmospheric precipitation quality?
- Author
-
Bragazza, Luca
- Published
- 2005
12. Nitrogen concentration and d15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe
- Author
-
Bragazza, Luca, Limpens, J., Gerdol, Renato, Grosvernier, P., Hajek, M., Hajek, T., Hajkova, P., Hansen, I., Iacumin, P., Kutnar, L., Rydin, H., and Tahvanainen, T.
- Subjects
nitrogen retention ,eutrophication ,internal nitrogen relocation ,nitrogen saturation ,inorganic nitrogen ,isotope ,global change ,peatlands ,pore water chemistry - Published
- 2005
13. The consequences of increased atmospheric N inputs on N retention ability of ombrotrophic Sphagnum plants in Europe
- Author
-
Bragazza, Luca, Limpens, J., Gerdol, Renato, Grosvernier, P., Hajek, M., Hajek, T., Hajkova, P., Hansen, I., Iacumin, P., Kutnar, L., and Tahvanainen, H. RYDIN T.
- Published
- 2004
14. Low-molecular-weight organic acids and hormone-like activity of dissolved organic matter in two forest soils in N Italy
- Author
-
Nardi, S, Pizzeghello, D., Bragazza, Luca, and Gerdol, Renato
- Subjects
Humus ,Phenolics ,Phytosociology ,Recruitment ,Silver fir ,Soil moisture - Published
- 2003
15. Hydrological regime and effects on environmental conditions in a Swedish and an Italian bog
- Author
-
Bragazza, Luca, Rydin, H., and Gerdol, Renato
- Published
- 2003
16. Analysis of 15 biotopes in Dolomitic Area
- Author
-
Andrich, A, Andrich, O, Bragazza, Luca, Cassol, M, Crepaz, A, Dallasta, A, Decet, F, Gerdol, Renato, Gnech, R, Lasen, C, and Toffolet, L.
- Published
- 2001
17. The poor-rich gradient in Sphagnum mires: vegetation patterns and ecological mechanisms
- Author
-
Bragazza, Luca and Gerdol, Renato
- Published
- 2000
18. Accumulation of trace metals and PAH in the moss Tortula muralis hedw. in the territory of Ferrara (Northern Italy)
- Author
-
Gerdol, Renato, Alberghini, Filippo, Bragazza, Luca, Marchesini, Roberta, Medici, Alessandro, Pedrini, Paola, Benedetti, S., Bovolenta, A., and Coppi, S.
- Published
- 2000
19. Hydrology, groundwater chemistry, and peat chemistry in relation to habitat condition in a mire on the South-eastern Alps of Italy
- Author
-
Bragazza, Luca and Gerdol, Renato
- Published
- 1999
20. The role of ecological gradients in species segregation in nutrient-poor mires on the southern Alps in Italy
- Author
-
Bragazza, Luca and Gerdol, Renato
- Published
- 1998
21. Spatial pattern of plant species in a poor mire on the southern Alps (Italy)
- Author
-
Bragazza, Luca
- Published
- 1998
22. Ein Beitrag zur Moortypologie am sudlichen Rand des Sphagnum-Moorareals in Europa
- Author
-
Alber, R., Bragazza, Luca, and Gerdol, Renato
- Published
- 1996
23. A floristic classification of five mire sites in the montane-subalpine belt of South Tyrol (S Alps, Italy)
- Author
-
Gerdol, Renato, Tomaselli, M, and Bragazza, Luca
- Published
- 1994
24. A climatic threshold triggers the die-off of peat mosses during an extreme heat wave
- Author
-
Bragazza, Luca
- Subjects
heat wave ,Desiccation-Tolerance ,bogs ,Water-Balance ,Evapotranspiration ,Summer ,Temperature ,drought ,Italian Alps ,Sphagnum Mosses ,climate warming ,water stress ,Sphagnum ,Co2 Exchange ,Cutover Bog ,Variability ,moss desiccation ,Growth Dynamics - Abstract
Heat waves, which are projected to be more frequent and intense in a warmer climate, could become a serious threat to plants that rely on water surplus availability, such as bryophytes. Here, I take the advantage of the European summer 2003 climate anomaly to assess the impact of an extreme heat wave on peat mosses of the genus Sphagnum, a group of bryophytes forming the bulk of living and dead biomass in peatlands. With this aim, 20 selected bogs in the Italian Alps were checked for Sphagnum survival in the years following the heat wave. Over the study area, the period May-September 2003 was characterized by higher mean monthly air temperature (13.5 degrees C) and lower mean monthly precipitation (87 mm) compared with normal climatic conditions (11.5 degrees C and 117 mm, respectively) so that the heat wave coincided with a drought spell. As a consequence of the unusual water stress, I documented an increased mortality of peat mosses forming high hummocks. In particular, at habitat scale, the distribution of desiccated peat mosses was restricted to the hummock face receiving the greatest amount of solar irradiation. However, at regional scale, the present study identified a climatic threshold, simply defined by the ratio of precipitation to temperature (P : T), which triggered an irreversible desiccation of peat mosses when mean monthly P : T dropped below 6.5 (mm : degrees C) during May-September 2003. The absence of any sign of recovery after 4 years since the drought must be seen as a harbinger of the deleterious effects of extreme heat waves on organisms not adapted to cope with abrupt climate anomaly.
25. Climate change, vegetation dynamics and carbon cycling in peatlands: the role of vascular plants in CO2 sequestration
- Author
-
Gavazov, Konstantin, Garnett, Mark, Mills, Rob, Robroek, Bjorn, and Bragazza, Luca
- Abstract
The project VeganPeat is described in this poster. IN particular, the workpackage oncerning the quantification of 14C in soil respired CO2 to detect the role of vascular plant abundance in promoting the decomposition of old organic matter in two peatlands located at different altitude.
26. Plastic and genetic responses of a common sedge to warming have contrasting effects on carbon cycle processes
- Author
-
Walker, Tom W.N., Weckwerth, Wolfram, Bragazza, Luca, Fragner, Lena, Forde, Brian G., Ostle, Nicholas J., Signarbieux, Constant, Sun, Xiaoliang, Ward, Susan E., and Bardgett, Richard D.
- Subjects
Climate warming ,13. Climate action ,Natural selection ,Genetic adaptation ,Carbon cycle ,Climate feedbacks ,Phenotypic plasticity ,15. Life on land ,Plant ecophysiology ,Plant metabolism ,Eriophorum vaginatum - Abstract
Climate warming affects plant physiology through genetic adaptation and phenotypic plasticity, but little is known about how these mechanisms influence ecosystem processes. We used three elevation gradients and a reciprocal transplant experiment to show that temperature causes genetic change in the sedge Eriophorum vaginatum. We demonstrate that plants originating from warmer climate produce fewer secondary compounds, grow faster and accelerate carbon dioxide (CO2) release to the atmosphere. However, warmer climate also caused plasticity in E. vaginatum, inhibiting nitrogen metabolism, photosynthesis and growth and slowing CO2 release into the atmosphere. Genetic differentiation and plasticity in E. vaginatum thus had opposing effects on CO2 fluxes, suggesting that warming over many generations may buffer, or reverse, the short‐term influence of this species over carbon cycle processes. Our findings demonstrate the capacity for plant evolution to impact ecosystem processes, and reveal a further mechanism through which plants will shape ecosystem responses to climate change., Ecology Letters, 22 (1), ISSN:1461-023X, ISSN:1461-0248
27. Sphagnum mosses and climate change: eco-physiological responses from multi-faceted manipulative experiments
- Author
-
Signarbieux, Constant, Robroek, Bjorn Jozef Maria, Jassey, Vincent, Buttler, Alexandre, Mulot, Mathieu, Mitchell, Edward AD, and Bragazza, Luca
- Subjects
climate change ,sphagnum photosynthesis ,Peatlands
28. Seasonal variation in nitrogen isotopic composition of bog plant litter during 3 years of field decomposition
- Author
-
Bragazza, Luca, Iacumin, Paola, Siffi, Chiara, and Gerdol, Renato
- Subjects
Litter C/N quotient ,N-15 Natural-Abundance ,Decomposition ,Peatland ,Soil Microbial Biomass ,Vascular plants ,Climate ,Availability ,Italian Alps ,Global Patterns ,Organic-Matter ,Sphagnum ,Mycorrhizal Fungi ,Discrimination ,Tundra ,reproductive and urinary physiology ,delta N-15 ,Boreal Forest - Abstract
In this study, we describe the seasonal variation in N-15 abundance in the litter of two Sphagnum species and four vascular plant species during 3 years of field decomposition in an Italian Alpine bog. Litter bags were periodically retrieved at the end of summer and winter periods, and the delta N-15 in residual litter was related to mass loss, litter chemistry, and climatic conditions. In Sphagnum litter, higher rates of decomposition during summer months were associated with an increase of delta N-15 probably due to the incorporation of microbial organic compounds rich in N-15. The litter of Eriophorum vaginatum and Carex rostrata was characterized by a decrease of delta N-15, so that the final signature was significantly lower than in initial litter. On the other hand, the residual litter of Potentilla erecta and Calluna vulgaris was characterized by a final delta N-15 higher than in initial litter. Our data reported a seasonality of N-15 abundance in the residual litter of Sphagnum species, but not in that of vascular plant species, thus highlighting the role of differences in litter chemistry.
29. The role of polyphenols between bryophytes and microbiota in regulating the functioning of Sphagnum-peatlands
- Author
-
Jassey, Vincent, Robroek, Bjorn Jozef Maria, Binet, Philippe, Bragazza, Luca, and Chiapusio, Geneviève
30. Climate warming and atmospheric nitrogen deposition : biogeochemical effects through plant-soil interactions
- Author
-
Bragazza, Luca
31. Implications of belowground carbon allocation by vascular plants for peat decomposition in a warmer climate
- Author
-
Zeh, Lilli, Kalbitz, Karsten, Limpens, Juul, Bragazza, Luca, Alewell, Christine, Glatzel, Stephan, and Technische Universität Dresden
- Subjects
ddc:570 ,Peatland, Vascular plants ,Hochmoor, Gefäßpflanzen - Abstract
Northern peatlands store large amounts of soil organic carbon that are extremely vulnerable to climate change. Direct environmental changes as temperature increase and water table drawdown might not only release more C as CO2 into the atmosphere, but will likely result in increasing vascular plants at the expense of Sphagnum mosses as well. Therefore, the question arises how different plant functional types (shrubs and sedges) with distinctly different functional strategies compared to Sphagnum mosses control C allocation in peatlands and what this means for peat decomposition. Therefore, the key objective of this thesis was to study the patterns of belowground C input by shrubs and sedges and how their above- to belowground C allocation might impact the decomposition of the present moss-dominated peat at different temperatures. To this aim, we applied a plant removal experiment on hummocks with mixed sedge-shrub vegetation in two moss-dominated peatlands located in the Italian Alps at different altitude, i.e. different temperatures. Subsequent measurements of soil respiration, dissolved organic carbon concentration and stable isotope composition (δ13C) of dissolved organic carbon in pore water were used as proxies to estimate the root derived C input by different plant functional type. With in situ 13C pulse-labelling, we assessed the above-to belowground C allocation by quantifying 13C in plant leaves and soil respiration and by measuring δ13C in dissolved organic carbon and in different depths of the peat. In additional peat cores taken under adjacent shrub and sedge plants, we used elemental analysis of carbon, nitrogen, their stable isotopes and analytical pyrolysis gas chromatography mass spectrometry to assess effects of vascular plants (sedge, shrub) on chemical properties and decomposition of the moss-dominated peat. The results provide a mechanistic evidence that plant functional types differ profoundly in their above- to belowground C allocation in peatlands. With shrubs, recently assimilated photosynthates are more likely to be allocated aboveground and turned over belowground than with sedges. Moreover, shrubs showed a fast and tightly coupled processes chain of C assimilation, subsequent C translocation to roots and finally C turnover to CO2, possibly supported by their mutualistic association to mycorrhizal fungi. Though sedges had a higher root-derived C input per unit of biomass than shrubs, the belowground C turnover of recently assimilated C was lower. At the same time, sedges allocated more C belowground to roots than shrubs. For sedges, belowground C turnover processes occurred decoupled from aboveground biomass. The temperature difference between sites did neither increase aboveground C allocation significantly nor belowground C allocation and turnover. However, a higher vascular plant biomass increased the root-derived C input, particularly with shrubs at higher temperatures. Multiple parameters also revealed a higher degree of decomposition of moss-dominated peat collected under sedges than under shrubs, particularly at the high temperature site. Temperature effects on peat decomposition were less pronounced than those of sedges. Eventually, it was not the higher belowground C turnover triggered by shrubs that accelerated decomposition of the present moss-dominated peat but likely the belowground C allocation to the roots by sedges. It can be concluded that the contribution of root exudates to belowground C allocation plays no decisive role in peat decomposition. Yet, the contribution of belowground biomass, particularly of sedges, but also litter of shrubs may impact decomposition processes in a changing climate. Hence, it can be expected that in northern peatlands with increasing shrub biomass, ancient C stores will not be mobilized, while with increasing sedge biomass, C stores are likely at risk.:Thesis at a glance 2 1 Introduction 5 1.1 Northern peatlands and climate change . . . . . . . . . . . . . . . . . . . . . 5 1.2 Vegetation and its impact on carbon cycling in northern peatlands in a warmer climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 In situ approaches to study plant functional type effects on peat decomposition in response to climate change . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Objectives, hypotheses and experimental approach . . . . . . . . . . . . . . . 14 2 Study I 21 2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3 Study II 47 3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4 Study III 75 4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.3 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5 Synthesis 97 5.1 Regulations of root-derived carbon input and above- to belowground carbon allocation by vascular plants in peatlands . . . . . . . . . . . . . . . . . . . . 97 5.2 The effect of different above- to belowground carbon allocation patterns of vascular plants on Sphagnum-derived peat decomposition at different temperatures103 6 Conclusions 105 6.1 Implications of belowground carbon allocation by vascular plants for peat decomposition in a warmer climate . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2 Towards a dynamic understanding of the impact of roots on peatland carbon cycling in a warmer climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7 Acknowledgements 109 References 111 List of publications and license agreements 139 Curriculum Vitae 149 Moore der nördlichen Hemisphäre speichern große Mengen an organischem Kohlenstoff im Boden, der durch den Klimawandel extrem gefährdet ist. Direkte Umweltveränderungen wie ein Temperaturanstieg und die Absenkung des Grundwasserspiegels könnten nicht nur mehr Kohlenstoff als CO2 in die Atmosphäre freisetzen, sondern werden wahrscheinlich auch zu einer Zunahme von Gefäßpflanzen auf Kosten von Torfmoosen führen. Daher stellt sich die Frage, wie verschiedene funktionellen Pflanzengruppen (Sträucher und Seggen) mit deutlich unterschiedlichen funktionellen Strategien im Vergleich zu Torfmoosen die Kohlenstoff-Allokation in Mooren steuern und was dies für den Torfabbau bedeutet. Daher war das Hauptziel dieser Arbeit, die Muster des unterirdischen Kohlenstoff-Eintrags durch Sträucher und Seggen zu untersuchen und festzustellen, wie sich ihre ober- und unterirdische Kohlenstoff-Allokation auf die Zersetzung des moosdominierten Torfs bei unterschiedlichen Temperaturen auswirken könnte. Zu diesem Zweck haben wir ein Pflanzenentfernungs-Experiment auf Bulken mit gemischter Seggen- und Strauchvegetation in zwei moosdominierten Hochmooren in den italienischen Alpen auf unterschiedlichen Höhenlagen, d. h. bei unterschiedlichen Temperaturen, durchgeführt. Anschließende Messungen der Bodenatmung, der Konzentration des gelösten organischen Kohlenstoffs und der stabilen Isotopenzusammensetzung (δ13C) des gelösten organischen Kohlenstoffs im Porenwasser dienten als Indikatoren für den von den Wurzeln stammenden Kohlenstoff-Eintrag der verschiedenen funktionellen Pflanzengruppen. Mit Hilfe der In-situ-13C-Pulsmarkierung wurde die ober- und unterirdische Kohlenstoff-Allokation durch die Quantifizierung von 13C in den Pflanzenblättern und in der Bodenatmung sowie durch die Messung von δ13C im gelösten organischen Kohlenstoff und im Torf aus verschiedenen Tiefen festgestellt. In zusätzlichen Torfkernen, die unter benachbarten Strauch- und Seggenpflanzen entnommen wurden, haben wir Elementaranalyse von Kohlenstoff, Stickstoff und deren stabile Isotope sowie die analytische Pyrolyse-Gaschromatographie-Massenspektrometrie verwendet, um die Auswirkungen von Gefäßpflanzen (Seggen, Sträucher) auf die chemischen Eigenschaften und den Abbau des moosdominierten Torfs zu bewerten. Die Ergebnisse liefern einen mechanistischen Beweis dafür, dass sich funktionelle Pflanzengruppen in ihrer ober- und unterirdischen Kohlenstoff-Allokation in Mooren stark unterscheiden. Bei Sträuchern wird kürzlich assimilierter Kohlenstoff eher oberirdisch allokiert und unterirdisch umgesetzt als bei Seggen. Darüber hinaus wiesen Sträucher eine schnelle und eng gekoppelte Prozesskette aus Kohlenstoff-Assimilation, anschließender Kohlenstoff-Translokation in die Wurzeln und schließlich Kohlenstoff-Umsatz zu CO2 auf, was möglicherweise durch ihre mutualistische Beziehung zu Mykorrhiza Pilzen unterstützt wird. Obwohl Seggen gegenüber Sträuchern einen höheren Kohlenstoff-Eintrag aus den Wurzeln pro Biomasseeinheit hatten, war der unterirdische Kohlenstoff-Umsatz von kürzlich assimiliertem C geringer. Gleichzeitig bauten Seggen unterirdisch mehr Kohlenstoff in die Wurzeln ein als Sträucher. Bei Seggen fand der unterirdische Kohlenstoff-Umsatz entkoppelt von der oberirdischen Biomasse statt. Der Temperaturunterschied hatte weder Einfluss auf die oberirdische Kohlenstoff-Allokation noch auf die unterirdische Kohlenstoff-Verlagerung und -Umsatz. Ein höherer Anteil an Gefäßpflanzen, insbesondere an Sträuchern, erhöhte jedoch den aus den Wurzeln stammenden Kohlenstoffeintrag, insbesondere bei höheren Temperaturen. Mehrere Parameter zeigten einen höheren Abbaugrad des moosdominierten Torfs unter Seggen gegenüber Sträuchern an, insbesondere am Standort mit hohen Temperaturen. Die Auswirkungen des Temperaturanstiegs auf den Torfabbau waren weniger ausgeprägt als die Auswirkungen durch Seggen. Schlussendlich war es nicht der durch Sträucher ausgelöste höhere unterirdische Kohlenstoff-Umsatz, der die Zersetzung des vorhandenen moosdominierten Torfs beschleunigte, sondern wahrscheinlich die unterirdische Kohlenstoff-Allokation zu den Wurzeln der Seggen. Daraus lässt sich schließen, dass der Beitrag der Wurzelexsudate zur unterirdischen Kohlenstoff-Allokation bei der Torfzersetzung keine entscheidende Rolle spielt. Der Eintrag der unterirdischen Biomasse, insbesondere der Seggen, aber auch der Streu von Sträuchern, kann jedoch die Abbauprozesse in einem sich ändernden Klima beeinflussen. Daher ist zu erwarten, dass in Moore der nördlichen Hemisphäre mit zunehmender Strauchbiomasse alte Kohlenstoff-Speicher nicht mobilisiert werden, während mit zunehmender Seggenbiomasse die Kohlenstoff-Speicher wahrscheinlich gefährdet sind.:Thesis at a glance 2 1 Introduction 5 1.1 Northern peatlands and climate change . . . . . . . . . . . . . . . . . . . . . 5 1.2 Vegetation and its impact on carbon cycling in northern peatlands in a warmer climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 In situ approaches to study plant functional type effects on peat decomposition in response to climate change . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Objectives, hypotheses and experimental approach . . . . . . . . . . . . . . . 14 2 Study I 21 2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3 Study II 47 3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4 Study III 75 4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.3 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5 Synthesis 97 5.1 Regulations of root-derived carbon input and above- to belowground carbon allocation by vascular plants in peatlands . . . . . . . . . . . . . . . . . . . . 97 5.2 The effect of different above- to belowground carbon allocation patterns of vascular plants on Sphagnum-derived peat decomposition at different temperatures103 6 Conclusions 105 6.1 Implications of belowground carbon allocation by vascular plants for peat decomposition in a warmer climate . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2 Towards a dynamic understanding of the impact of roots on peatland carbon cycling in a warmer climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7 Acknowledgements 109 References 111 List of publications and license agreements 139 Curriculum Vitae 149
- Published
- 2022
32. Peat Decomposition Rates from Managed Organic Soils in Switzerland
- Author
-
Bader, Cédric, Schulin, Rainer, Leifeld, Jens, and Bragazza, Luca
- Subjects
priming effect ,Stable carbon isotopes ,ORGANIC SOILS + BOG SOILS + PEAT SOILS (PEDOLOGY) ,CO2 emissions ,Peat decomposition ,C14 ,radiocarbon ,carbon accumulation ,ddc:630 ,Agriculture - Abstract
Organic soils develop under waterlogged conditions, leading to a reduced decomposition of biomass. Over the last millennia this led to the development of a large carbon (C) pool in the global C cycle. Drainage, necessary for agriculture and forestry, triggers rapid decomposition of soil organic matter (SOM). While undisturbed organic soils are C-sinks, drainage transforms them into C-sources. Climate, drainage depth and land-use are considered the main factors controlling SOM decomposition. However, there is still a large variation in decomposition rates among organic soils, even when climate, drainage and land-use conditions are similar. This thesis investigates the role of SOM composition on peat decomposability in a variety of differently managed drained organic soils. Peat samples from 21 organic soils managed as cropland, grassland and forest soils situated in Switzerland were incubated at 10 and 20 °C for more than 6 months. During incubation, we monitored CO2 emissions and related them to soil characteristics, including bulk density, soil pH, soil organic carbon (SOC) content, and elemental ratios (C/N, H/C and O/C). The incubated samples lost between 0.6 to 1.9% of their SOC at 10 °C and between 1.2 to 42% at 20 °C over the course of 10,000 h (>1 yr). This huge variation occurring under controlled conditions suggests that, besides drainage depth, climate and management, SOM composition is an underestimated factor that determines CO2 fluxes measured in field experiments. In contrast, correlations between the investigated soil characteristics and CO2 emissions were weak. Furthermore, there were no land-use effects. Such effects were expected based on the measured SOM characteristics and IPCC data. Temperature sensitivity of decomposition decreased with depth, indicating an enrichment of recalcitrant SOM in topsoils. This finding stands in contrast to findings in studies of undisturbed organic soils and Further it suggests that future C loss from agriculturally managed organic soils will be similar considering warmer climate conditions. Cultivation of organic soils is accompanied by inputs of young organic carbon (YOC) from plant residues. The amount of YOC inputs, their potential to compensate for oxidative peat loss as well as their lability are unknown. Studying the δ13C signatures in the topsoil of a managed organic soil revealed that at least 19 ± 2.4% of the SOC originate from YOC being accumulated recently. Yet, the accumulation rates are substantially smaller than average peat loss rates on the studied soils. Remarkably, the percentage of YOC in decomposing SOC was 53 ± 0.1%, indicating that YOC is more labile than bulk SOC. These findings are supported by the 14C age of emitted CO2 being younger than that of SOC. Inputs of fresh organic matter (FOM) to soil are known to induce priming effects, i.e. an altered decomposition of resident SOM. The effect of FOM addition on peat decomposition of agriculturally used organic soils has seldom been quantified experimentally. Therefore, we incubated soil samples from managed organic soils over three weeks with and without adding corn straw as FOM. The 13C and 14C signatures of SOC and emitted CO2 enabled us to apportion the amount of decomposed corn, as well as to estimate relative effects of corn addition on the decomposition of SOC from old peat and from YOC. FOM addition induced negative, positive and neutral priming of SOC decomposition. Further, the relative contribution of peat SOC to the overall CO2 release consistently decreased after FOM addition, suggesting that young and old C pools in managed organic soils respond differently to the addition of fresh plant residues. A combination of those two findings indicates that FOM addition can effectively reduce the decomposition of old peat. The results of this thesis suggest that agricultural use of organic soils has a tremendous effect on the composition and decomposability of SOC in organic soils. Furthermore, they show that also crop species known for their carbon sequestration potential are not likely to counteract peat losses caused by drainage. Therefore, agricultural management of organic soils without the risk of losing vast amounts of SOC seems unrealistic and thus, CO2 emissions from organic soils are not likely to decrease in the future. This means that they remain a big issue of concern for future generations in order to counteract climate change.
- Published
- 2017
33. Carbon dynamics in peatlands under changing hydrology: Effects of water level drawdown on litter quality, microbial enzyme activities and litter decomposition rates
- Author
-
Petra Straková, University of Helsinki, Faculty of Agriculture and Forestry, Department of Forest Sciences, Finnish Forest Research Institute (METLA), Helsingin yliopisto, maatalous-metsätieteellinen tiedekunta, metsatieteiden laitos, Helsingfors universitet, agrikultur-forstvetenskapliga fakulteten, institutionen för skogsvetenskaper, Bragazza, Luca, and Laiho, Raija
- Subjects
Hydrology ,geography ,Peat ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,biology ,Wetland ,Plant community ,metsätieteet ,04 agricultural and veterinary sciences ,15. Life on land ,Plant litter ,biology.organism_classification ,01 natural sciences ,Sphagnum ,13. Climate action ,Forest ecology ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Environmental science ,Ecosystem ,Cycling ,0105 earth and related environmental sciences - Abstract
Pristine peatlands are carbon (C) accumulating wetland ecosystems sustained by a high water level (WL) and consequent anoxia that slows down decomposition. Persistent WL drawdown as a response to climate and/or land-use change directly affects decomposition: increased oxygenation stimulates decomposition of the old C (peat) sequestered under prior anoxic conditions. Responses of the new C (plant litter) in terms of quality, production and decomposability, and the consequences for the whole C cycle of peatlands are not fully understood. WL drawdown induces changes in plant community resulting in shift in dominance from Sphagnum and graminoids to shrubs and trees. There is increasing evidence that the indirect effects of WL drawdown via the changes in plant communities will have more impact on the ecosystem C cycling than any direct effects. The aim of this study is to disentangle the direct and indirect effects of WL drawdown on the new C by measuring the relative importance of 1) environmental parameters (WL depth, temperature, soil chemistry) and 2) plant community composition on litter production, microbial activity, litter decomposition rates and, consequently, on the C accumulation. This information is crucial for modelling C cycle under changing climate and/or land-use. The effects of WL drawdown were tested in a large-scale experiment with manipulated WL at two time scales and three nutrient regimes. Furthermore, the effect of climate on litter decomposability was tested along a north-south gradient. Additionally, a novel method for estimating litter chemical quality and decomposability was explored by combining Near infrared spectroscopy with multivariate modelling. WL drawdown had direct effects on litter quality, microbial community composition and activity and litter decomposition rates. However, the direct effects of WL drawdown were overruled by the indirect effects via changes in litter type composition and production. Short-term (years) responses to WL drawdown were small. In long-term (decades), dramatically increased litter inputs resulted in large accumulation of organic matter in spite of increased decomposition rates. Further, the quality of the accumulated matter greatly changed from that accumulated in pristine conditions. The response of a peatland ecosystem to persistent WL drawdown was more pronounced at sites with more nutrients. The study demonstrates that the shift in vegetation composition as a response to climate and/or land-use change is the main factor affecting peatland ecosystem C cycle and thus dynamic vegetation is a necessity in any models applied for estimating responses of C fluxes to changes in the environment. The time scale for vegetation changes caused by hydrological changes needs to extend to decades. This study provides grouping of litter types (plant species and part) into functional types based on their chemical quality and/or decomposability that the models could utilize. Further, the results clearly show a drop in soil temperature as a response to WL drawdown when an initially open peatland converts into a forest ecosystem, which has not yet been considered in the existing models. Luonnontilaiset suot ovat hiiltä sitovia ekosysteemejä. Niissä maaperän märkyydestä johtuva hapen niukkuus hidastaa orgaanisen aineen hajotusta. Ilmaston tai maankäytön muutos voi aiheuttaa suon pitkäkestoisen kuivumisen. Se vaikuttaa sekä suorasti että epäsuorasti hajotukseen ja sitä kautta hiilen kiertoon ja hiilitaseeseen. Merkittävin suora vaikutus on maaperän hapekkuuden lisääntyminen, mikä nopeuttaa hajotusta. Epäsuorasti kuivuminen vaikuttaa muuttamalla suon kasviyhteisöä: tyypillisten suokasvien, kuten rahkasammalten ja sarojen, biomassa, tuotos ja karikesyöte vähenevät, kun taas varpujen ja puiden lisääntyvät. Kasviyhteisössä ja sen karikesyötteessä tapahtuvilla muutoksilla voi olla suurempi vaikutus hiilen kiertoon kuin vedenpinnan alenemisella sinänsä. Näiden muutosten suuntaa ja merkitystä koko ekosysteemin hiilitaseelle ei kuitenkaan vielä tunneta riittävästi. Tässä työssä tarkasteltiin vedenpinnan tason vaikutusta suohon tulevan karikkeen määrään, kemiallisiin ominaisuuksiin, mikrobiaktiivisuuteen ja hajoamisnopeuteen, ja näiden lopputulemana tapahtuvaan uuden orgaanisen aineen kertymään. Kuivumisen suorien ja epäsuorien vaikutusten merkitystä arvioitiin vertailemalla ympäristötekijöiden (vedenpinnan taso sekä maan lämpötila ja kemialliset ominaisuudet) ja kasvillisuuden koostumuksen selitysvoimaa. Tätä tietoa tarvitaan, kun mallinnetaan soiden hiilen kiertoa muuttuvissa olosuhteissa. Lyhyt- (muutamia vuosia) ja pitkäkestoisen (muutamia vuosikymmeniä) kuivumisen vaikutuksia tutkittiin kolmella eri ravinteisuustasolla. Ilmaston vaikutusta arvioitiin lisäksi vertailemalla Pohjois- ja Etelä-Suomessa sekä Virossa sijaitsevia koealoja. Karikkeen kemiallisen koostumuksen ja hajotettavuuden arviointiin kokeiltiin perinteisten uuttomenetelmien ja regressiomallien lisäksi nopeaa ja edullista infrapunaspektroskopiaa ja monimuuttuja-analyysiä. Vedenpinnan aleneminen vaikutti kasvilajitasolla karikkeen laatuun, kariketta hajottavaan mikrobiyhteisöön ja karikkeen hajoamisnopeuteen. Nämä kuivumisen suorat vaikutukset olivat kuitenkin vähäisiä verrattuina karikkeen määrän ja koostumuksen muutosten epäsuoriin vaikutuksiin. Lyhytkestoisen kuivumisen vaikutukset tutkittuihin tunnuksiin olivat kaikkinensa melko vähäisiä. Pitkäkestoisen kuivumisen aikana karikesyöte kasvoi merkittävästi. Se johti orgaanisen aineen kertymän lisääntymiseen, vaikka hajotus samalla nopeutui. Kertyvän aineen laatu myös poikkesi selvästi luonnontilaisten soiden kertymän laadusta. Vaste vedenpinnan alenemiseen sekä nopeutui että voimistui suon ravinteisuustason noustessa. Tulokset osoittavat, että metsäojituksesta ja ilmaston kuivumisesta aiheutuvat muutokset soiden kasviyhteisöissä vaikuttavat oleellisesti hiilen kiertoon. Siksi kasvillisuusmuutokset on sisällytettävä malleihin, joilla arvioidaan hiilivirtojen vasteita muuttuviin olosuhteisiin. Muutokset on myös huomioitava riittävän pitkällä aikajänteellä. Työssä esitetään karikkeen kemiallisiin ominaisuuksiin ja hajoamisnopeuteen perustuvat soille tyypillisten kasvien toiminnalliset ryhmät, joita malleissa voidaan hyödyntää. Lisäksi työ osoittaa kuivumisen alentavan maan lämpötilaa huomattavasti, mitä malleissa ei ole otettu huomioon.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.