1. An ML-based Probabilistic Approach for Irrigation Scheduling
- Author
-
Shivendra Srivastava, Nishant Kumar, Arindam Malakar, Sruti Das Choudhury, Chittaranjan Ray, and Tirthankar Roy
- Abstract
Globally, agriculture irrigation accounts for 70% of water use and is facing extensive and increasing water constraints. Well-designed irrigation scheduling can help determine the appropriate timing and water requirement for crop development and consequently improve water use efficiency. This research aims to assess the probability of irrigation needed for agricultural operations, considering soil moisture, evaporation, and leaf area index as indicators of crop water requirement. The decision on irrigation scheduling is taken based on a three-step methodology. First, relevant variables for each indicator are identified using a Random Forest regressor, followed by the development of a Long Short-Term Memory (LSTM) model to predict the three indicators. Second, errors in the simulation of each indicator are calculated by comparing the predicted values against the actual values, which are then used to calculate the error weights (normalized) of the three indicators for each month (to capture the seasonal variations). Third, the empirical distribution of each indicator is obtained for each month using the estimated error values, which are then adjusted based on the error weights calculated in the previous step. The probabilities of three threshold values (for each indicator) are considered, which correspond to three levels of irrigation requirement, i.e., low, medium, and high. The proposed approach provides a probabilistic framework for irrigation scheduling, which can significantly benefit farmers and policymakers in more informed decision-making related to irrigation scheduling.
- Published
- 2023
- Full Text
- View/download PDF