8 results on '"Dörte Bachmann"'
Search Results
2. Below-ground resource partitioning alone cannot explain the biodiversity-ecosystem function relationship : A field test using multiple tracers
- Author
-
Arthur Gessler, Dörte Bachmann, Nina Buchmann, Janneke Ravenek, Kathryn E. Barry, Christiane Roscher, Hans de Kroon, Annette Jesch, Liesje Mommer, Michael Scherer-Lorenzen, Tanja Strecker, and Alexandra Weigelt
- Subjects
0106 biological sciences ,Resource (biology) ,Biodiversity ,Plant Ecology and Nature Conservation ,Plant Science ,Complementarity ,Levins B ,Rare element tracers ,010603 evolutionary biology ,01 natural sciences ,Jena Experiment ,Grassland ,Ecosystem ,Resource uptake ,Proportional similarity ,Ecology, Evolution, Behavior and Systematics ,Stable isotopes ,2. Zero hunger ,geography ,Biomass (ecology) ,geography.geographical_feature_category ,Ecology ,Plant Ecology ,15. Life on land ,PE&RC ,Partition (database) ,Productivity (ecology) ,13. Climate action ,Environmental science ,Ecosystem function ,Plantenecologie en Natuurbeheer ,Species richness ,010606 plant biology & botany - Abstract
Below-ground resource partitioning is among the most prominent hypotheses for driving the positive biodiversity-ecosystem function relationship. However, experimental tests of this hypothesis in biodiversity experiments are scarce, and the available evidence is not consistent. We tested the hypothesis that resource partitioning in space, in time or in both space and time combined drives the positive effect of diversity on both plant productivity and total community resource uptake. At the community level, we predicted that total community resource uptake and biomass production above- and below-ground will increase with increased species richness or functional group richness. We predicted that, at the species level, resource partition breadth will become narrower, and that overlap between the resource partitions of different species will become smaller with increasing species richness or functional group richness. We applied multiple resource tracers (Li and Rb as potassium analogues, the water isotopologues-H2 18O and 2H2O, and 15N) in three seasons at two depths across a species and functional group richness gradient at a grassland biodiversity experiment. We used this multidimensional resource tracer study to test if plant species partition resources with increasing plant diversity across space, time or both simultaneously. At the community level, total community resource uptake of nitrogen and potassium and above- and below-ground biomass increased significantly with increasing species richness but not with increasing functional group richness. However, we found no evidence that resource partition breadth or resource partition overlap decreased with increasing species richness for any resource in space, time or both space and time combined. Synthesis. These findings indicate that below-ground resource partitioning may not drive the enhanced resource uptake or biomass production found here. Instead, other mechanisms such as facilitation, species-specific biotic feedback or above-ground resource partitioning are likely necessary for enhanced overall ecosystem function.
- Published
- 2018
- Full Text
- View/download PDF
3. Klimaschutz in der Gemeinschaftsgastronomie
- Author
-
Dörte Bachmann
- Abstract
Die menschliche Ernahrung wirkt sich auf globale Umweltprobleme aus und wird gleichzeitig von ihnen beeinflusst. Des Weiteren steht das Ernahrungssystem vor vielen komplexen sozialen Herausforderungen. Um diesen Problemen entgegenzuwirken, mussen alle Akteure einen Beitrag leisten – so auch die Gastronomie, die weit uber den Tellerrand hinaus eine grose Bedeutung hat. Die SV Group, eine in der Schweiz, in Deutschland und Osterreich tatige Gastronomie- und Hotelmanagementgruppe, ist sich ihrer Verantwortung und Wirkung bewusst. Daher hat sie 2012 gemeinsam mit dem WWF Schweiz das Nachhaltigkeitsprogramm ONE TWO WE entwickelt, um einen wirkungsvollen und umfassenden Beitrag fur eine nachhaltige Ernahrung zu leisten. Die Entwicklung und Umsetzung des Programms sowie die resultierenden Erfolge und Herausforderungen werden in diesem Beitrag beschrieben.
- Published
- 2019
- Full Text
- View/download PDF
4. Functional trait dissimilarity drives both species complementarity and competitive disparity
- Author
-
Cameron Wagg, Wolfgang W. Weisser, Helmut Hillebrand, Dörte Bachmann, Janneke Ravenek, Bernhard Schmid, Liesje Mommer, Anne Ebeling, Christiane Roscher, Nico Eisenhauer, Nina Buchmann, University of Zurich, and Wagg, Cameron
- Subjects
0106 biological sciences ,Biodiversity ,Plant Ecology and Nature Conservation ,Biology ,010603 evolutionary biology ,01 natural sciences ,10127 Institute of Evolutionary Biology and Environmental Studies ,Resource Acquisition Is Initialization ,Dominance (ecology) ,trait-based experiment (TBE) ,Jena experiment ,Ecology, Evolution, Behavior and Systematics ,biodiversity ,Community ,Ecology ,Plant community ,PE&RC ,1105 Ecology, Evolution, Behavior and Systematics ,Trait ,570 Life sciences ,biology ,590 Animals (Zoology) ,Forb ,Plantenecologie en Natuurbeheer ,Species richness ,competition ,community ecology ,010606 plant biology & botany - Abstract
Summary 1.Niche complementarity and competitive disparity are driving mechanisms behind plant community assembly and productivity. Consequently, there is great interest in predicting species complementarity and their competitive differences from their functional traits as dissimilar species may compete less and result in more complete use of resources. 2.Here we assessed the role of trait dissimilarities on species complementarity and competitive disparities within an experimental gradient of plant species richness and functional trait dissimilarity. Communities were assembled using three pools of grass and forb species based on a priori knowledge of traits related to (1) above- and belowground spatial differences in resource acquisition, (2) phenological differences, or (3) both. Complementarity and competitive disparities were assessed by partitioning the overyielding in mixed species communities into species complementarity and dominance effects. 3.Community overyielding and the underlying complementarity and competitive dominance varied strongly among the three plant species pools. Overyielding and complementarity was greatest among species that were assembled based on their variation in both spatial and phenological traits. Competitive dominance was greatest when species were assembled based on spatial resource-acquisition traits alone. 4.In communities that were assembled based on species variation in only spatial or phenological traits greater competitive dominance was predicted by greater differences SLA and flowering initiation respectively, while greater complementarity was predicted by greater dissimilarity in leaf area and flowering senescence, respectively. Greater differences in leaf area could also be linked to greater species complementarity in communities assembled based on variation in both phenological and spatial traits, but trait dissimilarity was unrelated to competitive dominance in these communities. 5.Our results indicate that complementarity and competitive disparity among species are both driven by trait dissimilarities. However, the identity of the traits that drives the complementarity and competitive disparity depends on the trait variation among species that comprise the community. Moreover, we demonstrate that communities assembled with the greater variation in both spatial and phenological traits show the greatest complementarity among species. This article is protected by copyright. All rights reserved.
- Published
- 2017
- Full Text
- View/download PDF
5. Dynamic niche partitioning in root water uptake facilitates efficient water use in more diverse grassland plant communities
- Author
-
Nina Buchmann, Arthur Gessler, Marcus Guderle, Olivier Ravel, Christiane Roscher, Damien Landais, Anke Hildebrandt, Alexandru Milcu, Annette Gockele, Marcel Bechmann, Dörte Bachmann, Jacques Roy, Christine Fischer, Sébastien Devidal, Alexandra Weigelt, Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Université Paul-Valéry - Montpellier 3 (UM3)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École pratique des hautes études (EPHE)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), German Center for Integrative Biodiversity Research (iDiv) Halle-Jena- Leipzig, Leipzig, Germany, Écotron Européen de Montpellier - UPS 3248, Centre National de la Recherche Scientifique (CNRS), Leibniz-Zentrum für Agrarlandschaftsforschung = Leibniz Centre for Agricultural Landscape Research (ZALF), Institute of Agricultural Sciences [Zürich], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), German Centre for Integrative Biodiversity Research (iDiv), Chair of Hydrogeology, Institute for Geosciences, Friedrich-Schiller-Universität Jena, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Université Paul-Valéry - Montpellier 3 (UPVM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut de Recherche pour le Développement (IRD [France-Sud]), Écotron Européen de Montpellier, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany], and Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université Paul-Valéry - Montpellier 3 (UM3)
- Subjects
2. Zero hunger ,0106 biological sciences ,Stomatal conductance ,010504 meteorology & atmospheric sciences ,Ecology ,[SDE.MCG]Environmental Sciences/Global Changes ,Plant community ,15. Life on land ,Biology ,010603 evolutionary biology ,01 natural sciences ,Agronomy ,Evapotranspiration ,Soil water ,[SDE]Environmental Sciences ,Ecosystem ,Species richness ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Water content ,Ecology, Evolution, Behavior and Systematics ,Water use ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
Summary 1.Efficient extraction of soil water is essential for the productivity of plant communities. However, research on the complementary use of resources in mixed plant communities, and especially the impact of plant species richness on root water uptake, is limited. So far, these investigations have been hindered by a lack of methods allowing for the estimation of root water uptake profiles. 2.The overarching aim of our study was to determine whether diverse grassland plant communities in general exploit soil water more deeply and whether this shift occurs all the time or only during times of enhanced water demand. 3.Root water uptake was derived by analyzing the diurnal decrease of soil water content separately at each measurement depth, thus yielding root water uptake profiles for 12 experimental grasslands communities with two different levels of species richness (4 and 16 sown species). Additional measurements of leaf water potential, stomatal conductance, and root traits were used to identify differences in water relations between plant functional groups. 4.Although the vertical root distribution did not differ between diversity levels, root water uptake shifted towards deeper layers (30 cm and 60 cm) in more diverse plots during periods of high vapor pressure deficit. Our results indicate that the more diverse communities were able to adjust their root water uptake, resulting in increased water uptake per root area compared to less diverse communities (52% at 20 cm, 118% at 30 cm, and 570% at 60 cm depth) and a more even distribution of water uptake over depth. Tall herbs, which had lower leaf water potential and higher stomatal conductance in more diverse mixtures, contributed disproportionately to dynamic niche partitioning in root water uptake. 5.This study underpins the role of diversity in stabilizing ecosystem function and mitigating drought stress effects during future climate change scenarios. Furthermore, the results provide evidence that root water uptake is not solely controlled by root length density distribution in communities with high plant diversity but also by spatial shifts in water acquisition. This article is protected by copyright. All rights reserved.
- Published
- 2018
- Full Text
- View/download PDF
6. Functional trait similarity of native and invasive herb species in subtropical China—Environment-specific differences are the key
- Author
-
Bing-Yang Ding, Dörte Bachmann, Michael Scherer-Lorenzen, Werner Härdtle, Alexandra Erfmeier, Mo Gao, Helge Bruelheide, and Sabine Both
- Subjects
Ecological niche ,food.ingredient ,Ecology ,Exotic species ,N uptake ,Introduced species ,Plant Science ,Biology ,BEF-China ,Invasive species ,food ,Nutrient ,Ecosystems Research ,Herb ,Head start ,Trait ,Key (lock) ,Fundamental niche ,Resource allocation ,Agronomy and Crop Science ,Environmental context ,Ecology, Evolution, Behavior and Systematics - Abstract
The attempt to identify traits associated with plant invasions has revealed ambiguous results to date. Accounting for environmental and temporal variation in multispecies trait comparisons of native and invasive species might help explain such inconsistency. The relative importance of light and nutrient availability was tested in a greenhouse experiment on trait expression and variation of 15 native and 15 invasive herb species from Southeast China. In addition, N uptake of a subset of these species and its temporal pattern were assessed by means of a 15N tracer experiment. A predominant lack of significant differences between the two status groups indicated strong overall trait similarities, thus supporting the 'join-the-local' hypothesis. However, at high light levels, the invasive species displayed significantly higher trait relative growth rates, whereas the native species had a higher tissue quality as displayed in a higher dry matter content of shoots and leaves. The invasion success of the invasive species could neither be explained by a general higher N uptake nor by a distinction in temporal N uptake strategy between native and invasive species. Despite comparable fundamental niches of the species, increased growth rates under beneficial light conditions may provide a head start advantage for invasive species compared to native ones. The present study confirms the assumption of an opportunistic strategy for invasive species and emphasizes the need to assess trait variation between native and invasive species in different environmental contexts.
- Published
- 2012
- Full Text
- View/download PDF
7. Functional composition has stronger impact than species richness on carbon gain and allocation in experimental grasslands
- Author
-
Markus Lange, Damien Landais, Tanja Strecker, Arthur Gessler, Stefan Karlowsky, Olivier Ravel, Annette Jesch, Perla Griselle Mellado-Vázquez, Nina Buchmann, Christiane Roscher, Dörte Bachmann, Alexandru Milcu, Jacques Roy, Gerd Gleixner, Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Université Paul-Valéry - Montpellier 3 (UPVM)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Écotron Européen de Montpellier, Centre National de la Recherche Scientifique (CNRS), Inst Landscape Biogeochem, Leibniz-Zentrum für Agrarlandschaftsforschung = Leibniz Centre for Agricultural Landscape Research (ZALF), Institute of Agricultural Sciences [Zürich], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Max Planck Institute for Biogeochemistry (MPI-BGC), Max-Planck-Gesellschaft, Université Paul-Valéry - Montpellier 3 (UM3)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École pratique des hautes études (EPHE)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Écotron Européen de Montpellier - UPS 3248, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Université Paul-Valéry - Montpellier 3 (UPVM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut de Recherche pour le Développement (IRD [France-Sud])
- Subjects
0106 biological sciences ,Canopy ,Leaves ,Sucrose ,Biodiversity ,Plant Science ,Disaccharides ,Biochemistry ,01 natural sciences ,Starches ,Grassland ,Soil ,chemistry.chemical_compound ,Biomass ,Photosynthesis ,ComputingMilieux_MISCELLANEOUS ,Carbon Isotopes ,0303 health sciences ,Biomass (ecology) ,Multidisciplinary ,geography.geographical_feature_category ,Ecology ,Organic Compounds ,Plant Biochemistry ,Plant Anatomy ,food and beverages ,Chemistry ,Physical Sciences ,Shoot ,[SDE]Environmental Sciences ,Medicine ,Research Article ,Stomatal conductance ,Ecological Metrics ,Nitrogen ,Science ,Carbohydrates ,Biology ,Poaceae ,complex mixtures ,010603 evolutionary biology ,Species diversity ,03 medical and health sciences ,Nitrogen cycle ,030304 developmental biology ,geography ,Ecology and Environmental Sciences ,Organic Chemistry ,Chemical Compounds ,Biology and Life Sciences ,Species Diversity ,15. Life on land ,Plant Leaves ,chemistry ,Agronomy ,Species richness ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Sugars ,010606 plant biology & botany - Abstract
Numerous experiments have shown positive diversity effects on plant productivity, but little is known about related processes of carbon gain and allocation. We investigated these processes in a controlled environment (Montpellier European Ecotron) applying a continuous 13CO2 label for three weeks to 12 soil-vegetation monoliths originating from a grassland biodiversity experiment (Jena Experiment) and representing two diversity levels (4 and 16 sown species). Plant species richness did not affect community- and species-level 13C abundances neither in total biomass nor in non-structural carbohydrates (NSC). Community-level 13C excess tended to be higher in the 16-species than in the 4-species mixtures. Community-level 13C excess was positively related to canopy leaf nitrogen (N), i.e. leaf N per unit soil surface. At the species level shoot 13C abundances varied among plant functional groups and were larger in legumes and tall herbs than in grasses and small herbs and correlated positively with traits as leaf N concentrations, stomatal conductance and shoot height. The 13C abundances in NSC were larger in transport sugars (sucrose, raffinose-family oligosaccharides) than in free glucose, fructose and compounds of the storage pool (starch) suggesting that newly assimilated carbon is to a small portion allocated to storage. Our results emphasize that the functional composition of communities is key in explaining carbon assimilation in grasslands.
- Published
- 2019
- Full Text
- View/download PDF
8. Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes
- Author
-
Annette Gockele, Christophe Escape, Clément Piel, Gerd Gleixner, Dörte Bachmann, Nina Buchmann, Arthur Gessler, Anke Hildebrandt, Christiane Roscher, Damien Landais, Sébastien Devidal, Alexandru Milcu, Markus Guderle, Olivier Ravel, Jacques Roy, Écotron Européen de Montpellier, Centre National de la Recherche Scientifique (CNRS), German Center for Integrative Biodiversity Research (iDiv) Halle-Jena- Leipzig, Leipzig, Germany, Leibniz-Zentrum für Agrarlandschaftsforschung = Leibniz Centre for Agricultural Landscape Research (ZALF), Procédés, Matériaux et Energie Solaire (PROMES), Université de Perpignan Via Domitia (UPVD)-Centre National de la Recherche Scientifique (CNRS), Institute of Agricultural Sciences [Zürich], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Max Planck Institute for Biogeochemistry (MPI-BGC), Max-Planck-Gesellschaft, Chair of Hydrogeology, Institute for Geosciences, and Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany]
- Subjects
Canopy ,[SDE.MCG]Environmental Sciences/Global Changes ,Biodiversity ,chemistry.chemical_element ,Grassland ,Carbon Cycle ,Ecosystem ,Water-use efficiency ,Ecology, Evolution, Behavior and Systematics ,ComputingMilieux_MISCELLANEOUS ,geography ,geography.geographical_feature_category ,Ecology ,food and beverages ,Water ,Vegetation ,15. Life on land ,Plants ,Nitrogen ,Carbon ,Plant Leaves ,Agronomy ,chemistry ,13. Climate action ,Environmental science ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology - Abstract
Little is known about the role of plant functional diversity for ecosystem-level carbon (C) fluxes. To fill this knowledge gap, we translocated monoliths hosting communities with four and 16 sown species from a long-term grassland biodiversity experiment (‘The Jena Experiment’) into a controlled environment facility for ecosystem research (Ecotron). This allowed quantifying the effects of plant diversity on ecosystem C fluxes as well as three parameters of C uptake efficiency (water and nitrogen use efficiencies and apparent quantum yield). By combining data on ecosystem C fluxes with vegetation structure and functional trait-based predictors, we found that increasing plant species and functional diversity led to higher gross and net ecosystem C uptake rates. Path analyses and light response curves unravelled the diversity of leaf nitrogen concentration in the canopy as a key functional predictor of C fluxes, either directly or indirectly via LAI and aboveground biomass.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.