1. The co-existence of sensory and autonomic neuropathy in type 1 diabetes with and without pain
- Author
-
Johan Røikjer, Suganthiya Santhiapillai Croosu, Tine Maria Hansen, Jens Brøndum Frøkjær, Christina Brock, Carsten Dahl Mørch, and Niels Ejskjaer
- Subjects
Diabetic foot ,Endocrinology ,Large fibre neuropathy ,Endocrinology, Diabetes and Metabolism ,Diabetic autonomic neuropathy ,Internal Medicine ,Painful diabetic peripheral neuropathy ,General Medicine ,Neuropathic pain ,Cardiac autonomic neuropathy ,Diabetic peripheral neuropathy ,Small fibre neuropathy - Abstract
Aims: To investigate the co-existence of diabetic peripheral neuropathy (DPN), painful diabetic peripheral neuropathy (PDPN), and cardiac autonomic neuropathy (CAN) and to establish a model to predict CAN based on peripheral measurements.Methods: Eighty participants (20 type 1 diabetes (T1DM) + PDPN, 20 T1DM + DPN, 20 T1DM-DPN (without DPN), and 20 healthy controls (HC)) underwent quantitative sensory testing, cardiac autonomic reflex tests (CARTs), and conventional nerve conduction. CAN was defined as ≥ 2 abnormal CARTs. After the initial analysis, the participants with diabetes were re-grouped based on the presence or absence of small (SFN) and large fibre neuropathy (LFN), respectively. A prediction model for CAN was made using logistic regression with backward elimination.Results: CAN was most prevalent in T1DM + PDPN (50%), followed by T1DM + DPN (25%) and T1DM-DPN and HC (0%). The differences in prevalence of CAN between T1DM + PDPN and T1DM-DPN/HC were significant (p < 0.001). When re-grouping, 58% had CAN in the SFN group and 55% in the LFN group, while no participants without either SFN or LFN had CAN. The prediction model had a sensitivity of 64%, a specificity of 67%, a positive predictive value of 30%, and a negative predictive value of 90%.Conclusion: This study suggests that CAN predominantly co-exists with concomitant DPN. Aims: To investigate the co-existence of diabetic peripheral neuropathy (DPN), painful diabetic peripheral neuropathy (PDPN), and cardiac autonomic neuropathy (CAN) and to establish a model to predict CAN based on peripheral measurements. Methods: Eighty participants (20 type 1 diabetes (T1DM) + PDPN, 20 T1DM + DPN, 20 T1DM-DPN (without DPN), and 20 healthy controls (HC)) underwent quantitative sensory testing, cardiac autonomic reflex tests (CARTs), and conventional nerve conduction. CAN was defined as ≥ 2 abnormal CARTs. After the initial analysis, the participants with diabetes were re-grouped based on the presence or absence of small (SFN) and large fibre neuropathy (LFN), respectively. A prediction model for CAN was made using logistic regression with backward elimination. Results: CAN was most prevalent in T1DM + PDPN (50%), followed by T1DM + DPN (25%) and T1DM-DPN and HC (0%). The differences in prevalence of CAN between T1DM + PDPN and T1DM-DPN/HC were significant (p < 0.001). When re-grouping, 58% had CAN in the SFN group and 55% in the LFN group, while no participants without either SFN or LFN had CAN. The prediction model had a sensitivity of 64%, a specificity of 67%, a positive predictive value of 30%, and a negative predictive value of 90%. Conclusion: This study suggests that CAN predominantly co-exists with concomitant DPN.
- Published
- 2023
- Full Text
- View/download PDF