Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES Green roof is a technique embedded in the design of Low Impact Development with recognized in the quantitative stormwater control in urbanized areas. The green roofs storage capacity is affected by several factors, being evapotranspiration one of the most important. Due to the lack of information related to green roofs evapotranspiration or even the role of this component in the water balance in these systems, this research was developed aiming to evaluate evapotranspiration rates of experimental extensive green roofs, vegetated with Sedum rupestre. The experiments were performed in subtropical Brazilian climatic conditions, and the observed values were compared to those resulting from typical predictive equations of evapotranspiration. The experiment was composed by six modular vegetated green roofs and four non-vegetated, installed and monitored at the Federal University of Santa Maria from July 2016 to February 2017. As a result, the median evapotranspiration was 2.6 mm day-1, with values ranging from 0.2 mm day-1 to 5.1 mm day-1; the median evaporation of the study period was 1.9 mm day-1, with values ranging from 0.1 mm day-1 to 9.5 mm day-1. Higher evapotranspiration rates were observed in summer (3.0 mm day-1), followed by winter (2.3 mm day-1) and spring (1.8 mm day-1), while evaporation, these values were 4.3 mm day-1 (summer), 1.9 mm day-1 (winter) and 1.0 mm day-1 (spring). In percentage terms, the highest total evapotranspiration loss (in relation to rainfall) were observed in July (49.0%), September (87.1%) and December 2016 (92.9%). Considering seasonal analysis, 49.8% of the winter returned to atmosphere as evapotranspiration, while in the spring and summer these values were 25.0% and 29.9%, respectively. Vegetated and non-vegetated modules had similar performance regarding flow control, with runoff coefficient of 0.47 and 0.43, respectively. The results of the research show that the average crop coefficient (Kc) and water stress coefficient (Ks) was 0.9, with an average monthly variation of 0.5-1.4 and 0.7-1.1, respectively, highly dependent on the stage of vegetation development and environmental conditions. In order to evaluate the ability of predicting evapotranspiration using classical equations, eight models were tested. Equations of Penman-Monteith-FAO56, Penman, Jensen-Haise and Turc equations presented reasonable daily results without including Kc and Ks to the reference evapotranspiration values. However, good adjustments were only observed in some periods. By adding the Kc and Ks coefficient to the predicted evapotranspiration values, the adjustments became substantially better, and the models of Penman, Slatyer-MclIroy and Priestley-Taylor presented excellent results for all periods analyzed. Regression models basead on climatological variables observed during the study were also development, which showed good adjustments only in few periods, and the relative humidity of the air stood out as an important explanatory factor of evapotranspiration. This work presents important contributions on the behavior of green roof´s evapotranspiration and serves as a stimulus for the development of complementary surveys, aiming at a better understanding of the technique and, consequently, its diffusion, especially in Brazil. Telhado verde é uma técnica inserida na concepção de desenvolvimento urbano de baixo impacto e comprovada em muitas pesquisas como uma medida eficiente no controle quantitativo de águas pluviais em áreas urbanizadas. A capacidade de armazenamento ou retenção das precipitações nesses sistemas, é influenciada por uma série de fatores, sendo a evapotranspiração de grande importância. Diante da carência de informações quanto à quantificação desta na parcela do balanço hídrico em telhados verdes e como forma de obter uma melhor compreensão acerca do desempenho hidrológico dos mesmos, especialmente sob as condições climáticas do Brasil, esta pesquisa teve como objetivo mensurar as taxas de evapotranspiração de parcelas de telhados verdes extensivos, vegetados com Sedum rupestre, comparando os valores observados com os resultantes de equações preditivas da evapotranspiração. O sistema experimental foi composto por dez módulos experimentais vegetados e não vegetados, os quais foram construídos e monitorados na Universidade Federal de Santa Maria, no período de Julho de 2016 a Fevereiro de 2017. Como resultado, verificou-se que a evapotranspiração mediana foi de 2,6 mm dia-1, com valores variando de 0,2 mm dia-1 a 5,1 mm dia-1, a evaporação mediana do período de estudo foi de 1,9 mm dia-1, com variações de 0,1 mm dia-1 a 9,5 mm dia-1. Foram observadas maiores taxas de evapotranspiração no verão (3,0 mm dia-1), seguido pelo inverno (2,3 mm d-1) e primavera (1,8 mm dia-1); para a evaporação esses valores foram de 4,3 mm dia-1 (verão), 1,9 mm dia-1 (inverno) e 1,0 mm dia-1 (primavera). Em termos percentuais, os maiores volumes totais evapotranspirados (em relação à chuva) foram observados em Julho (49,0%), Setembro (87,1%) e Dezembro de 2016 (92,9%). Na análise sazonal, 49,8% do que choveu no inverno retornou à atmosfera sob a forma de evapotranspiração, enquanto que na primavera e verão estes valores foram de 25,0% e 29,9%, respectivamente. Módulos vegetados e não vegetados tiveram desempenho semelhante quanto ao controle do escoamento, com valores de coeficiente de escoamento de 0,47 e 0,43, respectivamente. Os resultados da pesquisa mostram que o coeficiente de cultura (Kc) e de estresse hídrico (Ks) médio foi de 0,9, com variação média mensal de 0,5-1,4 e 0,7-1,1, respectivamente. Ambos os coeficientes são variáveis em função da fase de desenvolvimento da vegetação e das condições ambientais. Foi avaliada a capacidade de equações clássicas serem usadas na estimativa da evapotranspiração, sendo testados oito modelos. Na análise diária, as equações de Penman-Monteith-FAO56, Penman, Jensen-Haise e Turc apresentaram resultados razoáveis sem a incorporação de Kc e Ks aos valores de evapotranspiração de referência. No entanto, bons ajustes só foram observados em alguns períodos. Quando as equações foram corrigidas com os coeficientes Kc e Ks, os ajustes tornaram-se substancialmente melhores, sendo que os modelos de Penman, Slatyer-MclIroy e Priestley-Taylor apresentaram ótimos resultados para todos os períodos analisados. Também foram desenvolvidos modelos de regressão, a partir das variáveis climatológicas observadas durante o estudo, sendo que os mesmos apresentaram bons ajustes em apenas alguns períodos, e a umidade relativa do ar se destacou como um fator explicativo importante da evapotranspiração. Este trabalho apresenta importantes contribuições quanto ao comportamento da evapotranspiração em telhados verdes e serve como estímulo para o desenvolvimento de outras pesquisas na área, sobretudo no Brasil, visando uma melhor compreensão da técnica e, consequentemente, sua difusão.