1. High return level estimates of daily ERA-5 precipitation in Europe estimated using regionalized extreme value distributions
- Author
-
Rivoire, Pauline, Le Gall, Philomène, Favre, Anne-Catherine, Naveau, Philippe, Martius, Olivia, Institute of Geography [Bern], University of Bern, Institut des Géosciences de l’Environnement (IGE), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Oeschger Centre for Climate Change Research (OCCR), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Universität Bern [Bern] (UNIBE), and ANR-20-CE40-0025,T-REX,nouveaux challenges pour la prédiction des extremes et sa validation(2020)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,FOS: Computer and information sciences ,precipitation extremes ,910 Geography & travel ,Statistics - Applications ,extended generalized Pareto distribution ,Methodology (stat.ME) ,spatial clustering ,[STAT]Statistics [stat] ,ERA-5 ,ERA-5 Spatial clustering Precipitation extremes Extended generalized Pareto distribution ,550 Earth sciences & geology ,[SDE]Environmental Sciences ,Applications (stat.AP) ,[MATH]Mathematics [math] ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Statistics - Methodology - Abstract
Accurate estimation of daily rainfall return levels associated with large return periods is needed for a number of hydrological planning purposes, including protective infrastructure, dams, and retention basins. This is especially relevant at small spatial scales. The ERA-5 reanalysis product provides seasonal daily precipitation over Europe on a 0.25 x 0.25 grid (about 27 x 27 km). This translates more than 20,000 land grid points and leads to models with a large number of parameters when estimating return levels. To bypass this abundance of parameters, we build on the regional frequency analysis (RFA), a well-known strategy in statistical hydrology. This approach consists in identifying homogeneous regions, by gathering locations with similar distributions of extremes up to a normalizing factor and developing sparse regional models. In particular, we propose a step-by-step blueprint that leverages a recently developed and fast clustering algorithm to infer return level estimates over large spatial domains. This enables us to produce maps of return level estimates of ERA-5 reanalysis daily precipitation over continental Europe for various return periods and seasons. We discuss limitations and practical challenges and also provide a git hub repository. We show that a relatively parsimonious model with only a spatially varying scale parameter can compete well against statistical models of higher complexity., 13 pages and 11 figures
- Published
- 2022
- Full Text
- View/download PDF