54 results on '"Gámiz, E."'
Search Results
2. Semileptonic form factors for $$B\rightarrow D^*\ell \nu $$ <math> <mrow> <mi>B</mi> <mo>→</mo> <msup> <mi>D</mi> <mo>∗</mo> </msup> <mi>ℓ</mi> <mi>ν</mi> </mrow> </math> at nonzero recoil from $$2+1$$ <math> <mrow> <mn>2</mn> <mo>+</mo> <mn>1</mn> </mrow> </math> -flavor lattice QCD
- Author
-
Bazavov, A., DeTar, C., Du, D., El-Khadra, A., Gámiz, E., Gelzer, Z., Gottlieb, S., Heller, U., Kronfeld, A., Laiho, J., Mackenzie, P., Simone, J., Sugar, R., Toussaint, D., Water, R., and Vaquero, A.
- Abstract
We present the first unquenched lattice-QCD calculation of the form factors for the decay $$B\rightarrow D^*\ell \nu $$ B → D ∗ ℓ ν at nonzero recoil. Our analysis includes 15 MILC ensembles with $$N_f=2+1$$ N f = 2 + 1 flavors of asqtad sea quarks, with a strange quark mass close to its physical mass. The lattice spacings range from $$a\approx 0.15$$ a ≈ 0.15 fm down to 0.045 fm, while the ratio between the light- and the strange-quark masses ranges from 0.05 to 0.4. The valence b and c quarks are treated using the Wilson-clover action with the Fermilab interpretation, whereas the light sector employs asqtad staggered fermions. We extrapolate our results to the physical point in the continuum limit using rooted staggered heavy-light meson chiral perturbation theory. Then we apply a model-independent parametrization to extend the form factors to the full kinematic range. With this parametrization we perform a joint lattice-QCD/experiment fit using several experimental datasets to determine the CKM matrix element $$|V_{cb}|$$ | V cb | . We obtain $$\left| V_{cb}\right| = (38.40 \pm 0.68_{\text {th}} \pm 0.34_{\text {exp}} \pm 0.18_{\text {EM}})\times 10^{-3}$$ V cb = ( 38.40 ± 0 . 68 th ± 0 . 34 exp ± 0 . 18 EM ) × 10 - 3 . The first error is theoretical, the second comes from experiment and the last one includes electromagnetic and electroweak uncertainties, with an overall $$\chi ^2\text {/dof} = 126/84$$ χ 2 /dof = 126 / 84 , which illustrates the tensions between the experimental data sets, and between theory and experiment. This result is in agreement with previous exclusive determinations, but the tension with the inclusive determination remains. Finally, we integrate the differential decay rate obtained solely from lattice data to predict $$R(D^*) = 0.265 \pm 0.013$$ R ( D ∗ ) = 0.265 ± 0.013 , which confirms the current tension between theory and experiment.
- Published
- 2022
3. Semileptonic form factors for $B \to D^\ast\ell\nu$ at nonzero recoil from 2 + 1-flavor lattice QCD
- Author
-
Bazavov, A., DeTar, C. E., Du, Daping, El-Khadra, A. X., Gámiz, E., Gelzer, Z., Gottlieb, Steven, Heller, U. M., Kronfeld, A. S., Laiho, J., Mackenzie, P. B., Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Vaquero, A.
- Subjects
High Energy Physics - Lattice ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment ,High Energy Physics - Experiment - Abstract
We present the first unquenched lattice-QCD calculation of the form factors for the decay $B\rightarrow D^\ast\ell\nu$ at nonzero recoil. Our analysis includes 15 MILC ensembles with $N_f=2+1$ flavors of asqtad sea quarks, with a strange quark mass close to its physical mass. The lattice spacings range from $a\approx 0.15$ fm down to $0.045$ fm, while the ratio between the light- and the strange-quark masses ranges from 0.05 to 0.4. The valence $b$ and $c$ quarks are treated using the Wilson-clover action with the Fermilab interpretation, whereas the light sector employs asqtad staggered fermions. We extrapolate our results to the physical point in the continuum limit using rooted staggered heavy-light meson chiral perturbation theory. Then we apply a model-independent parametrization to extend the form factors to the full kinematic range. With this parametrization we perform a joint lattice-QCD/experiment fit using several experimental datasets to determine the CKM matrix element $|V_{cb}|$. We obtain $\left|V_{cb}\right| = (38.40 \pm 0.68_{\textrm{th}} \pm 0.34_{\textrm{exp}} \pm 0.18_{\textrm{EM}})\times 10^{-3}$. The first error is theoretical, the second comes from experiment and the last one includes electromagnetic and electroweak uncertainties, with an overall $\chi^2\text{/dof} = 126/84$, which illustrates the tensions between the experimental data sets, and between theory and experiment. This result is in agreement with previous exclusive determinations, but the tension with the inclusive determination remains. Finally, we integrate the differential decay rate obtained solely from lattice data to predict $R(D^\ast) = 0.265 \pm 0.013$, which confirms the current tension between theory and experiment., Comment: 46 pages, 14 figures. Synthetic data, results and full correlation matrices available in the ancillary files. Version accepted for publication in EPJ C
- Published
- 2021
4. Semileptonic form factors for $B \to D^\ast\ellν$ at nonzero recoil from 2 + 1-flavor lattice QCD
- Author
-
Bazavov, A., DeTar, C. E., Du, Daping, El-Khadra, A. X., Gámiz, E., Gelzer, Z., Gottlieb, Steven, Heller, U. M., Kronfeld, A. S., Laiho, J., Mackenzie, P. B., Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Vaquero, A.
- Subjects
High Energy Physics - Experiment (hep-ex) ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics - Lattice (hep-lat) ,FOS: Physical sciences ,High Energy Physics::Experiment - Abstract
We present the first unquenched lattice-QCD calculation of the form factors for the decay $B\rightarrow D^\ast\ellν$ at nonzero recoil. Our analysis includes 15 MILC ensembles with $N_f=2+1$ flavors of asqtad sea quarks, with a strange quark mass close to its physical mass. The lattice spacings range from $a\approx 0.15$ fm down to $0.045$ fm, while the ratio between the light- and the strange-quark masses ranges from 0.05 to 0.4. The valence $b$ and $c$ quarks are treated using the Wilson-clover action with the Fermilab interpretation, whereas the light sector employs asqtad staggered fermions. We extrapolate our results to the physical point in the continuum limit using rooted staggered heavy-light meson chiral perturbation theory. Then we apply a model-independent parametrization to extend the form factors to the full kinematic range. With this parametrization we perform a joint lattice-QCD/experiment fit using several experimental datasets to determine the CKM matrix element $|V_{cb}|$. We obtain $\left|V_{cb}\right| = (38.40 \pm 0.68_{\textrm{th}} \pm 0.34_{\textrm{exp}} \pm 0.18_{\textrm{EM}})\times 10^{-3}$. The first error is theoretical, the second comes from experiment and the last one includes electromagnetic and electroweak uncertainties, with an overall $χ^2\text{/dof} = 126/84$, which illustrates the tensions between the experimental data sets, and between theory and experiment. This result is in agreement with previous exclusive determinations, but the tension with the inclusive determination remains. Finally, we integrate the differential decay rate obtained solely from lattice data to predict $R(D^\ast) = 0.265 \pm 0.013$, which confirms the current tension between theory and experiment., 46 pages, 14 figures. Synthetic data, results and full correlation matrices available in the ancillary files. Version accepted for publication in EPJ C
- Published
- 2021
- Full Text
- View/download PDF
5. The hadronic vacuum polarization of the muon from four-flavor lattice QCD
- Author
-
Detar, C., Davies, C. T. H., El-Khadra, A. X., Gámiz, E., Gottlieb, S., Hatton, D., Kronfeld, A. S., Laiho, J., Lepage, G. P., Liu, Y., Mackenzie, P. B., Craig McNeile, Neil, E. T., Primer, T., Simone, J. N., Toussaint, D., Water, R. S., Vaquero, A., and Yamamoto, S.
- Subjects
High Energy Physics - Lattice ,High Energy Physics::Lattice ,High Energy Physics - Lattice (hep-lat) ,FOS: Physical sciences ,High Energy Physics::Experiment - Abstract
We present an update on the ongoing calculations by the Fermilab Lattice, HPQCD, and MILC Collaboration of the leading-order (in electromagnetism) hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon. Our project employs ensembles with four flavors of highly improved staggered fermions, physical light-quark masses, and four lattice spacings ranging from $a \approx 0.06$ to 0.15 fm for most of the results thus far., LATTICE 2019, 7 pages, 7 figures
- Published
- 2019
6. <math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>→</mo><mi>K</mi><mo>ℓ</mo><mi>ν</mi></mrow></math> decay from lattice QCD
- Author
-
Bazavov, A., Bernard, C., DeTar, C., Du, Daping, El-Khadra, A. X., Freeland, E. D., Gámiz, E., Gelzer, Z., Gottlieb, Steven, Heller, U. M., Kronfeld, A. S., Laiho, J., Liu, Yuzhi, Mackenzie, P. B., Meurice, Y., Neil, E. T., Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Abstract
We use lattice QCD to calculate the form factors f+(q2) and f0(q2) for the semileptonic decay Bs→Kℓν. Our calculation uses six MILC asqtad 2+1 flavor gauge-field ensembles with three lattice spacings. At the smallest and largest lattice spacing the light-quark sea mass is set to 1/10 the strange-quark mass. At the intermediate lattice spacing, we use four values for the light-quark sea mass ranging from 1/5 to 1/20 of the strange-quark mass. We use the asqtad improved staggered action for the light valence quarks, and the clover action with the Fermilab interpolation for the heavy valence bottom quark. We use SU(2) hard-kaon heavy-meson rooted staggered chiral perturbation theory to take the chiral-continuum limit. A functional z expansion is used to extend the form factors to the full kinematic range. We present predictions for the differential decay rate for both Bs→Kμν and Bs→Kτν. We also present results for the forward-backward asymmetry, the lepton polarization asymmetry, ratios of the scalar and vector form factors for the decays Bs→Kℓν and Bs→Dsℓν. Our results, together with future experimental measurements, can be used to determine the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element |Vub|.
- Published
- 2019
7. <math><mrow><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>u</mi><mi>s</mi></mrow></msub><mo>|</mo></mrow></math> from <math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mo>ℓ</mo><mn>3</mn></mrow></msub></mrow></math> decay and four-flavor lattice QCD
- Author
-
Bazavov, A., Bernard, C., DeTar, C., Du, Daping, El-Khadra, A. X., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Komijani, J., Kronfeld, A. S., Laiho, J., Mackenzie, P. B., Neil, E. T., Primer, T., Simone, J. N., Sugar, R., Toussaint, D., and Van de Water, R. S.
- Abstract
Using highly improved staggered quark (HISQ) Nf=2+1+1 MILC ensembles with five different values of the lattice spacing, including four ensembles with physical quark masses, we perform the most precise computation to date of the K→πℓν vector form factor at zero momentum transfer, f+K0π−(0)=0.9696(15)stat(12)syst. This is the first calculation that includes the dominant finite-volume effects, as calculated in chiral perturbation theory at next-to-leading order. Our result for the form factor provides a direct determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vus|=0.22333(44)f+(0)(42)exp, with a theory error that is, for the first time, at the same level as the experimental error. The uncertainty of the semileptonic determination is now similar to that from leptonic decays and the ratio fK+/fπ+, which uses |Vud| as input. Our value of |Vus| is in tension at the 2–2.6σ level both with the determinations from leptonic decays and with the unitarity of the CKM matrix. In the test of CKM unitarity in the first row, the current limiting factor is the error in |Vud|, although a recent determination of the nucleus-independent radiative corrections to superallowed nuclear β decays could reduce the |Vud|2 uncertainty nearly to that of |Vus|2. Alternative unitarity tests using only kaon decays, for which improvements in the theory and experimental inputs are likely in the next few years, reveal similar tensions and could be further improved by taking correlations between the theory inputs. As part of our analysis, we calculated the correction to f+Kπ(0) due to nonequilibrated topological charge at leading order in chiral perturbation theory, for both the full-QCD and the partially quenched cases. We also obtain the combination of low-energy constants in the chiral effective Lagrangian [C12r+C34r−(L5r)2](Mρ)=(2.92±0.31)×10−6.
- Published
- 2019
8. Opportunities in Flavour Physics at the HL-LHC and HE-LHC
- Author
-
Cerri, A., Gligorov, V.V., Malvezzi, S., Martin Camalich, J., Zupan, J., Akar, S., Alimena, J., Allanach, B.C., Altmannshofer, W., Anderlini, L., Archilli, F., Azzi, P., Banerjee, S., Barter, W., Barton, A.E., Bauer, M., Belyaev, I., Benson, S., Bettler, M., Bhattacharya, R., Bifani, S., Birnkraut, A., Bishara, F., Blake, T., Blusk, S., Boos, E., Borsato, M., Bozzi, C., Bragagnolo, A., Brod, J., Brodzicka, J., Buras, A.J., Cadamuro, L., Carbone, A., Carena, M., Carli, I., Carmona, A., Cavallo, F.R., Celis, A., Cepeda, M., Chahal, G.S., Chala, M., Charles, J., Charles, M., Chen, K.F., Chobanova, V., Chrzaszcz, M., Ciezarek, G., Cirigliano, V., Ciuchini, M., Cliff, H., Cogan, J., Colangelo, G., Contu, A., Covarelli, R., Cowan, G., Crivellin, A., D'Ambrosio, G., D'Onofrio, M., Dang, N.P., Davis, A., De Aguiar Francisco, O.A., De Bruyn, K., De Sanctis, U., De La Torre, H., Dekens, W., Deliot, F., Della Morte, M., Demers, S., Derkach, D., Deschamps, O., Descotes-Genon, S., Dettori, F., Di Canto, A., Dinardo, M., Dini, P., Dordei, F., Dorigo, M., dos Reis, A., Dudko, L., Dufour, L., Durieux, G., Dutta, S., Dziurda, A., Eitschberger, U., Esposito, A., Estevez, M., Fajfer, S., Falkowski, A., Faroughy, D.A., Fedi, G., Fiorendi, S., Fiori, F., Fitzpatrick, C., Fleischer, R., Fontana, M., Fox, P.J., Freytsis, M., Gámiz, E., Gabriel, E., Gambino, P., García Pardiñas, J., Geng, L.S., Gersabeck, E., Gersabeck, M., Gershon, T., Gilbert, A., Gonzalez-Alonso, M., Govoni, P., Graziani, G., Greljo, A., Grillo, L., Grinstein, B., Grohsjean, A., Grossman, Y., Guadagnoli, D., Guo, F.-K., Guzzi, L., Haller, J., Hamilton, B., Han, T., Harnik, R., Hill, D., Hiller, G., Hoepfner, K., Hogan, J.M., Hurth, T., Igonkina, O., Ilten, P., Isidori, G., Jain, Sa., John, M., Johnson, D., Jung, M., Jurik, N., Jäger, S., Kado, M., Kagan, A.L., Kamenik, J.F., Karliner, M., Kenzie, M., Khanji, B., Kieseler, J., Kitahara, T., Klijnsma, T., Knecht, M., Košnik, N., Kogler, R., Koppenburg, P., Korytov, A., Kreps, M., Langenbruch, C., Langenegger, U., Latham, T., Lebed, R.F., Lenz, A.J., Leonardo, N., Leroy, O., Li, Q., Li, T., Ligabue, F., Ligeti, Z., Long, K., Lunghi, E., Mahmoudi, F., Mancinelli, G., Mandrik, P., Mannel, T., Marcano, X., Marchand, J.F., Martínez Santos, D., Martin, A., Martinelli, M., Martinez Vidal, F., Marzocca, D., Matias, J., Matorras Cuevas, P., Matsedonskyi, O., Mauri, A., Mazumdar, K., Merk, M., Meyer, A.B., Michielin, E., Mitselmakher, G., Mittnacht, L., Monteil, S., Morello, M.J., Morgenstern, M., Narain, M., Nardecchia, M., Needham, M., Neri, N., Neubert, M., Neubert, S., Nierste, U., Nieves, J., Nir, Y., Nisati, A., O'Hanlon, D.P., Oset, E., Owen, P., Ozcelik, O., Pagan Griso, S., Palencia Cortezon, E., Palla, F., Palutan, M., Pappagallo, M., Parkes, C., Pascoli, S., Passaleva, G., Passemar, E., Patel, M., Pearce, A., Pedro, K., Perazzini, S., Perfilov, M., Perrozzi, L., Pescatore, L., Petersen, B.A., Petrov, A.A., Pich, A., Pilloni, A., Polci, F., Polosa, A.D., Prelovsek, S., Puig Navarro, A., Punzi, G., Rademacker, J., Rama, M., Reboud, M., Reimers, A., Reznicek, P., Robinson, D.J., Rosner, J.L., Ruiz, R., Saito, S., Sarkar, S., Savin, A., Sawant, S., Schacht, S., Schlaffer, M., Schmidt, A., Schneider, B., Schopper, A., Schune, M.H., Segovia, J., Selvaggi, M., Serra, N., Servant, G., Sestini, L., Shih, D., Silva Coutinho, R., Silvestrini, L., Skovpen, K., Skwarnicki, T., Smizanska, M., Soni, A., Soreq, Y., Spannowsky, M., Spradlin, P., Stamou, E., Stone, S., Stracka, S., Straub, D.M., P Szczepaniak, A., T'Jampens, S., Takahashi, Y., Teubert, F., Thomas, E., Tisserand, V., Torre, R., Tresoldi, F., Tsiakkouri, D., Turchikhin, S., Ulmer, K.A., Vagnoni, V., Van Dyk, D., Van Tilburg, J., Vecchi, S., Venditti, R., Vesterinen, M., Virto, J., Volkov, P., Vorotnikov, G., Vryonidou, E., Walder, J., Walkowiak, W., Wang, J., Wang, W., Weiland, C., Whitehead, M., Wilkinson, G., Williams, Mike, Williams, M.R.J., Wilson, F., Xie, Y., Yang, Z., Yazgan, E., You, T., Yu, F., Zhang, C., Zhang, L., Zhang, W., Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTH), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), and Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
flavor ,hep-ex ,Physics::Instrumentation and Detectors ,new physics ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,interpretation of experiments: LHC-B ,FOS: Physical sciences ,hep-ph ,interpretation of experiments: CMS ,Higgs particle ,interpretation of experiments: ATLAS ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,CERN LHC Coll: upgrade ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,High Energy Physics::Experiment ,new particle - Abstract
Motivated by the success of the flavour physics programme carried out over the last decade at the Large Hadron Collider (LHC), we characterize in detail the physics potential of its High-Luminosity and High-Energy upgrades in this domain of physics. We document the extraordinary breadth of the HL/HE-LHC programme enabled by a putative Upgrade II of the dedicated flavour physics experiment LHCb and the evolution of the established flavour physics role of the ATLAS and CMS general purpose experiments. We connect the dedicated flavour physics programme to studies of the top quark, Higgs boson, and direct high-$p_T$ searches for new particles and force carriers. We discuss the complementarity of their discovery potential for physics beyond the Standard Model, affirming the necessity to fully exploit the LHC's flavour physics potential throughout its upgrade eras., Comment: Report from Working Group 4 on the Physics of the HL-LHC, and Perspectives at the HE-LHC, 292 pages
- Published
- 2019
9. $B_s\to K\ell\nu$ decay from lattice QCD
- Author
-
Bazavov, A., Bernard, C., DeTar, C., Du, Daping, El-Khadra, A. X., Freeland, E. D., Gámiz, E., Gelzer, Z., Gottlieb, Steven, Heller, U. M., Kronfeld, A. S., Laiho, J., Liu, Yuzhi, Mackenzie, P. B., Meurice, Y., Neil, E. T., Simone, J. N., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Lattice ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment - Abstract
We use lattice QCD to calculate the form factors $f_+(q^2)$ and $f_0(q^2)$ for the semileptonic decay $B_s\to K\ell\nu$. Our calculation uses six MILC asqtad 2+1 flavor gauge-field ensembles with three lattice spacings. At the smallest and largest lattice spacing the light-quark sea mass is set to 1/10 the strange-quark mass. At the intermediate lattice spacing, we use four values for the light-quark sea mass ranging from 1/5 to 1/20 of the strange-quark mass. We use the asqtad improved staggered action for the light valence quarks, and the clover action with the Fermilab interpolation for the heavy valence bottom quark. We use SU(2) hard-kaon heavy-meson rooted staggered chiral perturbation theory to take the chiral-continuum limit. A functional $z$ expansion is used to extend the form factors to the full kinematic range. We present predictions for the differential decay rate for both $B_s\to K\mu\nu$ and $B_s\to K\tau\nu$. We also present results for the forward-backward asymmetry, the lepton polarization asymmetry, ratios of the scalar and vector form factors for the decays $B_s\to K\ell\nu$ and $B_s\to D_s \ell\nu$. Our results, together with future experimental measurements, can be used to determine the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{ub}|$., Comment: 57 pages, 22 figures, 13 tables
- Published
- 2019
10. Opportunities in flavour physics at the HL-LHC and HE-LHC
- Author
-
Cerri, A., Gligorov, V. V., Malvezzi, S., Martin Camalich, J., Zupan, J., Akar, S., Alimena, J., Allanach, B. C., Altmannshofer, W., Anderlini, L., Archilli, F., Azzi, P., Banerjee, S., Barter, W., Barton, A. E., Bauer, M., Belyaev, I., Benson, S., Bettler, M., Bhattacharya, R., Bifani, S., Birnkraut, A., Bishara, F., Blake, T., Blusk, S., Boos, E., Borsato, M., Bozzi, C., Bragagnolo, A., Brod, J., Brodzicka, J., Buras, A. J., Cadamuro, L., Carbone, A., Carena, M., Carli, I., Carmona, A., Cavallo, F. R., Celis, A., Cepeda, M., Chahal, G. S., Chala, M., Charles, J., Charles, M., Chen, K. F., Chobanova, V., Chrzaszcz, M., Ciezarek, G., Cirigliano, V., Ciuchini, M., Cliff, H., Cogan, J., Colangelo, G., Contu, A., Covarelli, R., Cowan, G., Crivellin, A., D'Ambrosio, G., D'Onofrio, M., Dang, N. P., Davis, A., De Aguiar Francisco, O. A., De Bruyn, K., De Sanctis, U., De la Torre, H., Dekens, W., Deliot, F., Della Morte, M., Demers, S., Derkach, D., Deschamps, O., Descotes-Genon, S., Dettori, F., Di Canto, A., Dinardo, M., Dini, P., Dordei, F., Dorigo, M., dos Reis, A., Dudko, L., Dufour, L., Durieux, G., Dutta, S., Dziurda, A., Eitschberger, U., Esposito, A., Estevez, M., Fajfer, S., Falkowski, A., Faroughy, D. A., Fedi, G., Fiorendi, S., Fiori, F., Fitzpatrick, C., Fleischer, R., Fontana, M., Fox, P. J., Freytsis, M., Gámiz, E., Gabriel, E., Gambino, P., García Pardiñas, J., Geng, L. S., Gersabeck, E., Gersabeck, M., Gershon, T., Gilbert, A., Gonzalez-Alonso, M., Govoni, P., Graziani, G., Greljo, A., Grillo, L., Grinstein, B., Grohsjean, A., Grossman, Y., Guadagnoli, D., F. -Guo, K., Guzzi, L., Haller, J., Hamilton, B., Han, T., Harnik, R., Hill, D., Hiller, G., Hoepfner, K., Hogan, J. M., Hurth, T., Igonkina, O., Ilten, P., Isidori, G., Sajain, ., John, M., Johnson, D., Jung, M., Jurik, N., Jäger, S., Kado, M., Kagan, A. L., Kamenik, J. F., Karliner, M., Kenzie, M., Khanji, B., Kieseler, J., Kitahara), T., Klijnsma, T., Knecht, M., Košnik, N., Kogler, R., Koppenburg, P., Korytov, A., Kreps, M., Langenbruch, C., Langenegger, U., Latham, T., Lebed, R. F., Lenz, A. J., Leonardo, N., Leroy, O., Li, Q., Li, T., Ligabue, F., Ligeti, Z., Long, K., Lunghi, E., Mahmoudi, F., Mancinelli, G., Mandrik, P., Mannel, T., Marcano, X., Marchand, J. F., Martínez Santos, D., Martin), A., Martinelli, M., Martinez Vidal, F., Marzocca, D., Matias, J., Matorras Cuevas), P., Matsedonskyi, O., Mauri, A., Mazumdar, K., Merk, M., Meyer, A. B., Michielin, E., Mitselmakher, G., Mittnacht, L., Monteil, S., Morello, M. J., Morgenstern, M., Narain, M., Nardecchia, M., Needham, M., Neri, N., Neubert, M., Neubert, S., Nierste, U., Nieves, J., Nir, Y., Nisati, A., O'Hanlon, D. P., Oset, E., Owen, P., Ozcelik, O., Pagan Griso, S., Palencia Cortezon, E., Palla, F., Palutan, M., Pappagallo, M., Parkes, C., Pascoli, S., Passaleva, G., Passemar, E., Patel, M., Pearce, A., Pedro, K., Perazzini, S., Perfilov, M., Perrozzi, L., Pescatore, L., Petersen, B. A., Petrov, A. A., Pich, A., Pilloni, A., Polci, F., Polosa, A. D., Prelovsek, S., Puig Navarro, A., Punzi, G., Rademacker, J., Rama, M., Reboud, M., Reimers, A., Reznicek, P., Robinson, D. J., Rosner, J. L., Ruiz, R., Saito, S., Sarkar, S., Savin, A., Sawant, S., Schacht, S., Schlaffer, M., Schmidt, A., Schneider, B., Schopper, A., Schune, M. H., Segovia, J., Selvaggi, M., Serra, N., Servant, G., Sestini, L., Shih, D., Silva Coutinho, R., Silvestrini, L., Skovpen, K., Skwarnicki, T., Smizanska, M., Soni, A., Soreq, Y., Spannowsky, M., Spradlin, P., Stamou, E., Stone, S., Stracka, S., Straub, D. M., P Szczepaniak, A., T'Jampens, S., Takahashi), Y., Teubert, F., Thomas, E., Tisserand, V., Torre, R., Tresoldi, F., Tsiakkouri, D., Turchikhin, S., Ulmer, K. A., Vagnoni, V., van Dyk, D., van Tilburg, J., Vecchi, S., Venditti, R., Vesterinen, M., Virto, J., Volkov, P., Vorotnikov, G., Vryonidou, E., Walder, J., Walkowiak, W., Wang, J., Wang, W., Weiland, C., Whitehead, M., Wilkinson, G., Williams, M., Williams, M. R. J., Wilson, F., Xie, Y., Yang, Z., Yazgan, E., You, T., Yu, F., Zhang, C., Zhang, L., and Zhang, W.
- Subjects
LHC upgrade ,flavour physics ,European strategy for particle physics - Published
- 2019
11. Opportunities in Flavour Physics at the HL-LHC and HE-LHC
- Author
-
Zupan, J., Akar, S., Alimena, J., Allanach, B. C., Altmannshofer, W., Anderlini, L., Archilli, F., Azzi, P., Banerjee, S., Barter, W., Barton, A. E., Bauer, M., Belyaev, I., Benson, S., Bettler, M., Bhattacharya, R., Bifani, S., Birnkraut, A., Bishara, F., Blake, T., Blusk, S., Boos, E., Borsato, M., Bozzi, C., Bragagnolo, A., Brod, J., Brodzicka, J., Buras, A. J., Cadamuro, L., Carbone, A., Carena, M., Carli, I., Carmona, A., Cavallo, F. R., Celis, A., Cepeda, M., Chahal, G. S., Chala, M., Charles, J., Charles, M., Chen, K. F., Chobanova, V., Chrzaszcz, M., Ciezarek, G., Cirigliano, V., Ciuchini, M., Cliff, H., Cogan, J., Colangelo, G., Contu, A., Covarelli, R., Cowan, G., Crivellin, A., D'Ambrosio, G., D'Onofrio, M., Dang, N. P., Davis, A., Francisco, O. A. De Aguiar, Bruyn, K. De, Sanctis, U. De, Torre, H. De la, Dekens, W., Deliot, F., Morte, M. Della, Demers, S., Derkach, D., Deschamps, O., Descotes-Genon, S., Dettori, F., Canto, A. Di, Dinardo, M., Dini, P., Dordei, F., Dorigo, M., Reis, A. dos, Dudko, L., Dufour, L., Durieux, G., Dutta, S., Dziurda, A., Eitschberger, U., Esposito, A., Estevez, M., Fajfer, S., Falkowski, A., Faroughy, D. A., Fedi, G., Fiorendi, S., Fiori, F., Fitzpatrick, C., Fleischer, R., Fontana, M., Fox, P. J., Freytsis, M., Gámiz, E., Gabriel, E., Gambino, P., Pardiñas, J. García, Geng, L. S., Gersabeck, E., Gersabeck, M., Gershon, T., Gilbert, A., Gonzalez-Alonso, M., Govoni, P., Graziani, G., Greljo, A., Grillo, L., Grinstein, B., Grohsjean, A., Grossman, Y., Guadagnoli, D., Guo, F. -K., Guzzi, L., Haller, J., Hamilton, B., Han, T., Harnik, R., Hill, D., Hiller, G., Hoepfner, K., Hogan, J. M., Hurth, T., Igonkina, O., Ilten, P., Isidori, G., Jain, Sa, John, M., Johnson, D., Jung, M., Jurik, N., Jäger, S., Kado, M., Kagan, A. L., Kamenik, J. F., Karliner, M., Kenzie, M., Khanji, B., Kieseler, J., Kitahara, T., Klijnsma, T., Knecht, M., Košnik, N., Kogler, R., Koppenburg, P., Korytov, A., Kreps, M., Langenbruch, C., Langenegger, U., Latham, T., Lebed, R. F., Lenz, A. J., Leonardo, N., Leroy, O., Li, Q., Li, T., Ligabue, F., Ligeti, Z., Long, K., Lunghi, E., Mahmoudi, F., Mancinelli, G., Mandrik, P., Mannel, T., Marcano, X., Marchand, J. F., Santos, D. Martínez, Martin, A., Martinelli, M., Vidal, F. Martinez, Marzocca, D., Matias, J., Cuevas, P. Matorras, Matsedonskyi, O., Mauri, A., Mazumdar, K., Merk, M., Meyer, A. B., Michielin, E., Mitselmakher, G., Mittnacht, L., Monteil, S., Morello, M. J., Morgenstern, M., Narain, M., Nardecchia, M., Needham, M., Neri, N., Neubert, M., Neubert, S., Nierste, U., Nieves, J., Nir, Y., Nisati, A., O'Hanlon, D. P., Oset, E., Owen, P., Ozcelik, O., Griso, S. Pagan, Cortezon, E. Palencia, Palla, F., Palutan, M., Pappagallo, M., Parkes, C., Pascoli, S., Passaleva, G., Passemar, E., Patel, M., Pearce, A., Pedro, K., Perazzini, S., Perfilov, M., Perrozzi, L., Pescatore, L., Petersen, B. A., Petrov, A. A., Pich, A., Pilloni, A., Polci, F., Polosa, A. D., Prelovsek, S., Navarro, A. Puig, Punzi, G., Rademacker, J., Rama, M., Reboud, M., Reimers, A., Reznicek, P., Robinson, D. J., Rosner, J. L., Ruiz, R., Saito, S., Sarkar, S., Savin, A., Sawant, S., Schacht, S., Schlaffer, M., Schmidt, A., Schneider, B., Schopper, A., Schune, M. H., Segovia, J., Selvaggi, M., Serra, N., Servant, G., Sestini, L., Shih, D., Coutinho, R. Silva, Silvestrini, L., Skovpen, K., Skwarnicki, T., Smizanska, M., Soni, A., Soreq, Y., Spannowsky, M., Spradlin, P., Stamou, E., Stone, S., Stracka, S., Straub, D. M., Szczepaniak, A. P, T'Jampens, S., Takahashi, Y., Teubert, F., Thomas, E., Tisserand, V., Torre, R., Tresoldi, F., Tsiakkouri, D., Turchikhin, S., Ulmer, K. A., Vagnoni, V., Dyk, D. van, Tilburg, J. van, Vecchi, S., Venditti, R., Vesterinen, M., Virto, J., Volkov, P., Vorotnikov, G., Vryonidou, E., Walder, J., Walkowiak, W., Wang, J., Wang, W., Weiland, C., Whitehead, M., Wilkinson, G., Williams, J. M., Williams, M. R. J., Wilson, F., Xie, Y., Yang, Z., Yazgan, E., You, T., Yu, F., Zhang, C., Zhang, L., Zhang, W., Cerri, A., Gligorov, V. V., Malvezzi, S., and Camalich, J. Martin
- Subjects
Physics::Instrumentation and Detectors ,hep-ex ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment ,hep-ph - Abstract
Motivated by the success of the flavour physics programme carried out over the last decade at the Large Hadron Collider (LHC), we characterize in detail the physics potential of its High-Luminosity and High-Energy upgrades in this domain of physics. We document the extraordinary breadth of the HL/HE-LHC programme enabled by a putative Upgrade II of the dedicated flavour physics experiment LHCb and the evolution of the established flavour physics role of the ATLAS and CMS general purpose experiments. We connect the dedicated flavour physics programme to studies of the top quark, Higgs boson, and direct high-$p_T$ searches for new particles and force carriers. We discuss the complementarity of their discovery potential for physics beyond the Standard Model, affirming the necessity to fully exploit the LHC's flavour physics potential throughout its upgrade eras.
- Published
- 2019
- Full Text
- View/download PDF
12. $D$ meson Semileptonic Decay Form Factors at $q^2 = 0$
- Author
-
Li, Ruizi, Bazavov, A., Bernard, C. W., DeTar, C., Du, Daping, El-Khadra, A. X., Gámiz, E., Gottlieb, Steven, Heller, U. M., Komijani, J., Kronfeld, A. S., Laiho, J., Mackenzie, P. B., Neil, E. T., Primer, T., Simone, J. N., Sugar, R. L., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Lattice ,High Energy Physics - Phenomenology (hep-ph) ,High Energy Physics::Lattice ,High Energy Physics - Lattice (hep-lat) ,FOS: Physical sciences ,High Energy Physics::Experiment - Abstract
We discuss preliminary results for the vector form factors $f_+^{\{\pi,K\}}$ at zero-momentum transfer for the decays $D\to\pi\ell\nu$ and $D\to K \ell\nu$ using MILC's $N_f = 2+1+1$ HISQ ensembles at four lattice spacings, $a \approx 0.042, 0.06, 0.09$, and 0.12 fm, and various HISQ quark masses down to the (degenerate) physical light quark mass. We use the kinematic constraint $f_+(q^2)= f_0(q^2)$ at $q^2 = 0$ to determine the vector form factor from our study of the scalar current, which yields $f_0(0)$. Results are extrapolated to the continuum physical point in the framework of hard pion/kaon SU(3) heavy-meson-staggered $\chi$PT and Symanzik effective theory. Our calculation improves upon the precision achieved in existing lattice-QCD calculations of the vector form factors at $q^2=0$. We show the values of the CKM matrix elements $|V_{cs}|$ and $|V_{cd}|$ that we would obtain using our preliminary results for the form factors together with recent experimental results, and discuss the implications of these values for the second row CKM unitarity., Comment: 10 pages, 3 figures, proceeding of The 36th Annual International Symposium on Lattice Field Theory
- Published
- 2019
- Full Text
- View/download PDF
13. Opportunities in Flavour Physics at the HL-LHC and HE-LHC
- Author
-
Cerri, A, Gligorov, VV, Malvezzi, S, Camalich, J Martin, Zupan, J, Akar, S, Alimena, J, Allanach, BC, Altmannshofer, W, Anderlini, L, Archilli, F, Azzi, P, Banerjee, S, Barter, W, Barton, AE, Bauer, M, Belyaev, I, Benson, S, Bettler, M, Bhattacharya, R, Bifani, S, Birnkraut, A, Bishara, F, Blake, T, Blusk, S, Boos, E, Borsato, M, Bozzi, C, Bragagnolo, A, Brod, J, Brodzicka, J, Buras, AJ, Cadamuro, L, Carbone, A, Carena, M, Carli, I, Carmona, A, Cavallo, FR, Celis, A, Cepeda, M, Chahal, GS, Chala, M, Charles, J, Charles, M, Chen, KF, Chobanova, V, Chrzaszcz, M, Ciezarek, G, Cirigliano, V, Ciuchini, M, Cliff, H, Cogan, J, Colangelo, G, Contu, A, Covarelli, R, Cowan, G, Crivellin, A, D'Ambrosio, G, D'Onofrio, M, Dang, NP, Davis, A, Francisco, OA De Aguiar, Bruyn, K De, Sanctis, U De, Torre, H De la, Dekens, W, Deliot, F, Morte, M Della, Demers, S, Derkach, D, Deschamps, O, Descotes-Genon, S, Dettori, F, Canto, A Di, Dinardo, M, Dini, P, Dordei, F, Dorigo, M, Reis, A dos, Dudko, L, Dufour, L, Durieux, G, Dutta, S, Dziurda, A, Eitschberger, U, Esposito, A, Estevez, M, Fajfer, S, Falkowski, A, Faroughy, DA, Fedi, G, Fiorendi, S, Fiori, F, Fitzpatrick, C, Fleischer, R, Fontana, M, Fox, PJ, Freytsis, M, Gámiz, E, and Gabriel, E
- Subjects
Physics::Instrumentation and Detectors ,hep-ex ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment ,hep-ph - Abstract
Motivated by the success of the flavour physics programme carried out over the last decade at the Large Hadron Collider (LHC), we characterize in detail the physics potential of its High-Luminosity and High-Energy upgrades in this domain of physics. We document the extraordinary breadth of the HL/HE-LHC programme enabled by a putative Upgrade II of the dedicated flavour physics experiment LHCb and the evolution of the established flavour physics role of the ATLAS and CMS general purpose experiments. We connect the dedicated flavour physics programme to studies of the top quark, Higgs boson, and direct high-$p_T$ searches for new particles and force carriers. We discuss the complementarity of their discovery potential for physics beyond the Standard Model, affirming the necessity to fully exploit the LHC's flavour physics potential throughout its upgrade eras.
- Published
- 2018
14. Bs→Kℓν decay from lattice QCD
- Author
-
Bazavov, A., Bernard, C., DeTar, C., Du, Daping, El-Khadra, A. X., Freeland, E. D., Gámiz, E., Gelzer, Z., Gottlieb, Steven, Heller, U. M., Kronfeld, A. S., Laiho, J., Liu, Yuzhi, Mackenzie, P. B., Meurice, Y., Neil, E. T., Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
ddc - Published
- 2018
15. Vus| from Kℓ3 decay and four-flavor lattice QCD
- Author
-
Bazavov, A., Bernard, C., DeTar, C., Du, Daping, El-Khadra, A. X., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Komijani, J., Kronfeld, A. S., Laiho, J., Mackenzie, P. B., Neil, E. T., Primer, T., Simone, J. N., Sugar, R., Toussaint, D., and Van de Water, R. S.
- Subjects
ddc - Published
- 2018
16. <math><mrow><mi>B</mi></mrow></math>- and <math><mi>D</mi></math>-meson leptonic decay constants from four-flavor lattice QCD
- Author
-
Bazavov, A., Bernard, C., Brown, N., DeTar, C., El-Khadra, A. X., Gámiz, E., Gottlieb, Steven, Heller, U. M., Komijani, J., Kronfeld, A. S., Laiho, J., Mackenzie, P. B., Neil, E. T., Simone, J. N., Sugar, R. L., Toussaint, D., and Van de Water, R. S.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Lattice ,High Energy Physics - Phenomenology (hep-ph) ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics - Lattice (hep-lat) ,FOS: Physical sciences ,High Energy Physics::Experiment - Abstract
We calculate the leptonic decay constants of heavy-light pseudoscalar mesons with charm and bottom quarks in lattice quantum chromodynamics on four-flavor QCD gauge-field configurations with dynamical $u$, $d$, $s$, and $c$ quarks. We analyze over twenty isospin-symmetric ensembles with six lattice spacings down to $a\approx 0.03$~fm and several values of the light-quark mass down to the physical value $\frac{1}{2}(m_u+m_d)$. We employ the highly-improved staggered-quark (HISQ) action for the sea and valence quarks; on the finest lattice spacings, discretization errors are sufficiently small that we can calculate the $B$-meson decay constants with the HISQ action for the first time directly at the physical $b$-quark mass. We obtain the most precise determinations to-date of the $D$- and $B$-meson decay constants and their ratios, $f_{D^+} = 212.7(0.6)$~MeV, $f_{D_s} = 249.9(0.4)$~MeV, $f_{D_s}/f_{D^+} = 1.1749(16)$, $f_{B^+} = 189.4 (1.4)$~MeV, $f_{B_s} = 230.7(1.3)$~MeV, $f_{B_s}/f_{B^+} = 1.2180(47)$, where the errors include statistical and all systematic uncertainties. Our results for the $B$-meson decay constants are three times more precise than the previous best lattice-QCD calculations, and bring the QCD errors in the Standard-Model predictions for the rare leptonic decays $\overline{\mathcal{B}}(B_s \to \mu^+\mu^-) = 3.64(11) \times 10^{-9}$, $\overline{\mathcal{B}}(B^0 \to \mu^+\mu^-) = 1.00(3) \times 10^{-10}$, and $\overline{\mathcal{B}}(B^0 \to \mu^+\mu^-)/\overline{\mathcal{B}}(B_s \to \mu^+\mu^-) = 0.0273(9)$ to well below other sources of uncertainty. As a byproduct of our analysis, we also update our previously published results for the light-quark-mass ratios and the scale-setting quantities $f_{p4s}$, $M_{p4s}$, and $R_{p4s}$. We obtain the most precise lattice-QCD determination to date of the ratio $f_{K^+}/f_{\pi^+} = 1.1950(^{+16}_{-23})$~MeV., Comment: Errors related to the standard model prediction for the rare leptonic decays are fixed in the abstract and Eqs. (7.44), (7.45), and (8.3)
- Published
- 2018
17. Short-distance matrix elements for <math><msup><mi>D</mi><mn>0</mn></msup></math>-meson mixing from <math><msub><mi>N</mi><mi>f</mi></msub><mo>=</mo><mn>2</mn><mo>+</mo><mn>1</mn></math> lattice QCD
- Author
-
Bazavov, A., Bernard, C., Bouchard, C. M., Chang, C. C., DeTar, C., Du, D., El-Khadra, A. X., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Kronfeld, A. S., Laiho, J., Mackenzie, P. B., Neil, E. T., Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, R.
- Abstract
We calculate in three-flavor lattice QCD the short-distance hadronic matrix elements of all five ΔC=2 four-fermion operators that contribute to neutral D-meson mixing both in and beyond the Standard Model. We use the MILC Collaboration’s Nf=2+1 lattice gauge-field configurations generated with asqtad-improved staggered sea quarks. We also employ the asqtad action for the valence light quarks and use the clover action with the Fermilab interpretation for the charm quark. We analyze a large set of ensembles with pions as light as Mπ≈180 MeV and lattice spacings as fine as a≈0.045 fm, thereby enabling good control over the extrapolation to the physical pion mass and continuum limit. We obtain for the matrix elements in the MS¯−NDR scheme using the choice of evanescent operators proposed by Beneke et al., evaluated at 3 GeV, ⟨D0|Oi|D¯0⟩={0.0805(55)(16),−0.1561(70)(31),0.0464(31)(9),0.2747(129)(55),0.1035(71)(21)} GeV4 (i=1–5). The errors shown are from statistics and lattice systematics, and the omission of charmed sea quarks, respectively. To illustrate the utility of our matrix-element results, we place bounds on the scale of CP-violating new physics in D0 mixing, finding lower limits of about 10–50×103 TeV for couplings of O(1). To enable our results to be employed in more sophisticated or model-specific phenomenological studies, we provide the correlations among our matrix-element results. For convenience, we also present numerical results in the other commonly used scheme of Buras, Misiak, and Urban.
- Published
- 2018
18. $|V_{us}|$ from $K_{\ell 3}$ decay and four-flavor lattice QCD
- Author
-
Bazavov, A., Bernard, C., DeTar, C., Du, Daping, El-Khadra, A. X., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Komijani, J., Kronfeld, A. S., Laiho, J., Mackenzie, P. B., Neil, E. T., Primer, T., Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Lattice ,High Energy Physics - Phenomenology (hep-ph) ,High Energy Physics::Phenomenology ,High Energy Physics - Lattice (hep-lat) ,FOS: Physical sciences ,High Energy Physics::Experiment ,High Energy Physics - Experiment - Abstract
Using HISQ $N_f=2+1+1$ MILC ensembles with five different values of the lattice spacing, including four ensembles with physical quark masses, we have performed the most precise computation to date of the $K\to\pi\ell\nu$ vector form factor at zero momentum transfer, $f_+^{K^0\pi^-}(0)=0.9696(15)_\text{stat}(12)_\text{syst}$. This is the first calculation that includes the dominant finite-volume effects, as calculated in chiral perturbation theory at next-to-leading order. Our result for the form factor provides a direct determination of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{us}|=0.22333(44)_{f_+(0)}(42)_\text{exp}$, with a theory error that is, for the first time, at the same level as the experimental error. The uncertainty of the semileptonic determination is now similar to that from leptonic decays and the ratio $f_{K^+}/f_{\pi^+}$, which uses $|V_{ud}|$ as input. Our value of $|V_{us}|$ is in tension at the 2--$2.6\sigma$ level both with the determinations from leptonic decays and with the unitarity of the CKM matrix. In the test of CKM unitarity in the first row, the current limiting factor is the error in $|V_{ud}|$, although a recent determination of the nucleus-independent radiative corrections to superallowed nuclear $\beta$ decays could reduce the $|V_{ud}|^2$ uncertainty nearly to that of $|V_{us}|^2$. Alternative unitarity tests using only kaon decays, for which improvements in the theory and experimental inputs are likely in the next few years, reveal similar tensions. As part of our analysis, we calculated the correction to $f_+^{K\pi}(0)$ due to nonequilibrated topological charge at leading order in chiral perturbation theory, for both the full-QCD and the partially-quenched cases. We also obtain the combination of low-energy constants in the chiral effective Lagrangian $[C_{12}^r+C_{34}^r-(L_5^r)^2](M_\rho)=(2.92\pm0.31)\cdot10^{-6}$., Comment: 42 pages and 12 figures. Expanded discussion of fit methodology. Finite volume error increased, conclusions unchanged. Version accepted by Phys. Rev. D
- Published
- 2018
- Full Text
- View/download PDF
19. Short-distance matrix elements for D0-meson mixing from Nf=2+1 lattice QCD
- Author
-
Bazavov, A., Bernard, C., Bouchard, C. M., Chang, C. C., DeTar, C., Du, D., El-Khadra, A. X., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Kronfeld, A. S., Laiho, J., Mackenzie, P. B., Neil, E. T., Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, R.
- Subjects
High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment - Abstract
We calculate in three-flavor lattice QCD the short-distance hadronic matrix elements of all five ΔC=2 four-fermion operators that contribute to neutral \ud D-meson mixing both in and beyond the Standard Model. We use the MILC Collaboration’s Nf=2+1 lattice gauge-field configurations generated with asqtad-improved staggered sea quarks. We also employ the asqtad action for the valence light quarks and use the clover action with the Fermilab interpretation for the charm quark. We analyze a large set of ensembles with pions as light as lattice gauge-field configurations generated with asqtad-improved staggered sea quarks. We also employ the asqtad action for the valence light quarks and use the clover action with the Fermilab interpretation for the charm quark. We analyze a large set of ensembles with pions as light as Mπ ≈ 180 MeV and lattice spacings as fine as a ≈ 0.045 fm, thereby enabling good control over the extrapolation to the physical pion mass and continuum limit. We obtain for the matrix elements in the MS−NDR scheme using the choice of evanescent operators proposed by Beneke et al., evaluated at 3 GeV, ⟨D0|Oi|¯D0⟩ = {0.0805(55)16),−0.1561(70)(31), 0.0464(31)(9), 0.2747(129)(55), 0.1035(71)(21)} GeV4 (i=1–5). The errors shown are from statistics and lattice systematics, and the omission of charmed sea quarks, respectively. To illustrate the utility of our matrix-element results, we place bounds on the scale of CP-violating new physics in D0 mixing, finding lower limits of about 10–50×103 TeV for couplings of O(1). To enable our results to be employed in more sophisticated or model-specific phenomenological studies, we provide the correlations among our matrix-element results. For convenience, we also present numerical results in the other commonly used scheme of Buras, Misiak, and Urban.
- Published
- 2018
20. B - and D -meson leptonic decay constants from four-flavor lattice QCD
- Author
-
Bazavov, A., Bernard, C., Brown, N., DeTar, C., El-Khadra, A. X., Gámiz, E., Gottlieb, Steven, Heller, U. M., Komijani, J., Kronfeld, A. S., Laiho, J., Mackenzie, P. B., Neil, E. T., Simone, J. N., Sugar, R. L., Toussaint, D., and Van de Water, R. S.
- Subjects
ddc - Published
- 2018
21. Report from Working Group 4: Opportunities in Flavour Physics at the HL-LHC and HE-LHC
- Author
-
Cerri, A., Gligorov, V.V., Malvezzi, S., Martin Camalich, J., Zupan, J., Akar, S., Alimena, J., Allanach, B.C., Altmannshofer, W., Anderlini, L., Archilli, F., Azzi, P., Banerjee, S., Barter, W., Barton, A.E., Bauer, M., Belyaev, I., Benson, S., Bettler, M., Bhattacharya, R., Bifani, S., Birnkraut, A., Bishara, F., Blake, T., Blusk, S., Boos, E., Borsato, M., Bozzi, C., Bragagnolo, A., Brod, J., Brodzicka, J., Buras, A.J., Cadamuro, L., Carbone, A., Carena, M., Carli, I., Carmona, A., Cavallo, F.R., Celis, A., Cepeda, M., Chahal, G.S., Chala, M., Charles, J., Charles, M., Chen, K.F., Chobanova, V., Chrzaszcz, M., Ciezarek, G., Cirigliano, V., Ciuchini, M., Cliff, H., Cogan, J., Colangelo, G., Contu, A., Covarelli, R., Cowan, G., Crivellin, A., D'Ambrosio, G., D'Onofrio, M., Dang, N.P., Davis, A., De Aguiar Francisco, O.A., De Bruyn, K., De Sanctis, U., De la Torre, H., Dekens, W., Deliot, F., Della Morte, M., Demers, S., Derkach, D., Deschamps, O., Descotes-Genon, S., Dettori, F., Di Canto, A., Dinardo, M., Dini, P., Dordei, F., Dorigo, M., dos Reis, A., Dudko, L., Dufour, L., Durieux, G., Dutta, S., Dziurda, A., Eitschberger, U., Esposito, A., Estevez, M., Fajfer, S., Falkowski, A., Faroughy, D.A., Fedi, G., Fiorendi, S., Fiori, F., Fitzpatrick, C., Fleischer, R., Fontana, M., Fox, P.J., Freytsis, M., Gámiz, E., Gabriel, E., Gambino, P., García Pardiñas, J., Geng, L.S., Gersabeck, E., Gersabeck, M., Gershon, T., Gilbert, A., Gonzalez-Alonso, M., Govoni, P., Graziani, G., Greljo, A., Grillo, L., Grinstein, B., Grohsjean, A., Grossman, Y., Guadagnoli, D., Guo, F.-K., Guzzi, L., Haller, J., Hamilton, B., Han, T., Harnik, R., Hill, D., Hiller, G., Hoepfner, K., Hogan, J.M., Hurth, T., Igonkina, O., Ilten, P., Isidori, G., Jain, Sa., John, M., Johnson, D., Jung, M., Jurik, N., Jäger, S., Kado, M., Kagan, A.L., Kamenik, J.F., Karliner, M., Kenzie, M., Khanji, B., Kieseler, J., Kitahara, T., Klijnsma, T., Knecht, M., Košnik, N., Kogler, R., Koppenburg, P., Korytov, A., Kreps, M., Langenbruch, C., Langenegger, U., Latham, T., Lebed, R.F., Lenz, A.J., Leonardo, N., Leroy, O., Li, Q., Li, T., Ligabue, F., Ligeti, Z., Long, K., Lunghi, E., Mahmoudi, F., Mancinelli, G., Mandrik, P., Mannel, T., Marcano, X., Marchand, J.F., Martínez Santos, D., Martin, A., Martinelli, M., Martinez Vidal, F., Marzocca, D., Matias, J., Matorras Cuevas, P., Matsedonskyi, O., Mauri, A., Mazumdar, K., Merk, M., Meyer, A.B., Michielin, E., Mitselmakher, G., Mittnacht, L., Monteil, S., Morello, M.J., Morgenstern, M., Narain, M., Nardecchia, M., Needham, M., Neri, N., Neubert, M., Neubert, S., Nierste, U., Nieves, J., Nir, Y., Nisati, A., O'Hanlon, D.P., Oset, E., Owen, P., Ozcelik, O., Pagan Griso, S., Palencia Cortezon, E., Palla, F., Palutan, M., Pappagallo, M., Parkes, C., Pascoli, S., Passaleva, G., Passemar, E., Patel, M., Pearce, A., Pedro, K., Perazzini, S., Perfilov, M., Perrozzi, L., Pescatore, L., Petersen, B.A., Petrov, A.A., Pich, A., Pilloni, A., Polci, F., Polosa, A.D., Prelovsek, S., Puig Navarro, A., Punzi, G., Rademacker, J., Rama, M., Reboud, M., Reimers, A., Reznicek, P., Robinson, D.J., Rosner, J.L., Ruiz, R., Saito, S., Sarkar, S., Savin, A., Sawant, S., Schacht, S., Schlaffer, M., Schmidt, A., Schneider, B., Schopper, A., Schune, M.H., Segovia, J., Selvaggi, M., Serra, N., Servant, G., Sestini, L., Shih, D., Silva Coutinho, R., Silvestrini, L., Skovpen, K., Skwarnicki, T., Smizanska, M., Soni, A., Soreq, Y., Spannowsky, M., Spradlin, P., Stamou, E., Stone, S., Stracka, S., Straub, D.M., P Szczepaniak, A., T'Jampens, S., Takahashi, Y., Teubert, F., Thomas, E., Tisserand, V., Torre, R., Tresoldi, F., Tsiakkouri, D., Turchikhin, S., Ulmer, K.A., Vagnoni, V., van Dyk, D., van Tilburg, J., Vecchi, S., Venditti, R., Vesterinen, M., Virto, J., Volkov, P., Vorotnikov, G., Vryonidou, E., Walder, J., Walkowiak, W., Wang, J., Wang, W., Weiland, C., Whitehead, M., Wilkinson, G., Williams, Mike, Williams, M.R.J., Wilson, F., Xie, Y., Yang, Z., Yazgan, E., You, T., Yu, F., Zhang, C., Zhang, L., and Zhang, W.
- Subjects
Physics::Instrumentation and Detectors ,hep-ex ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment ,hep-ph ,Particle Physics - Experiment ,Particle Physics - Phenomenology - Abstract
Motivated by the success of the flavour physics programme carried out over the last decade at the Large Hadron Collider (LHC), we characterize in detail the physics potential of its High-Luminosity and High-Energy upgrades in this domain of physics. We document the extraordinary breadth of the HL/HE-LHC programme enabled by a putative Upgrade II of the dedicated flavour physics experiment LHCb and the evolution of the established flavour physics role of the ATLAS and CMS general purpose experiments. We connect the dedicated flavour physics programme to studies of the top quark, Higgs boson, and direct high-$p_T$ searches for new particles and force carriers. We discuss the complementarity of their discovery potential for physics beyond the Standard Model, affirming the necessity to fully exploit the LHC's flavour physics potential throughout its upgrade eras.
- Published
- 2018
22. B- and D-meson leptonic decay constants and quark masses from four-flavor lattice QCD
- Author
-
Lattice, Fermilab, MILC, Collaborations, TUMQCD, Bazavov, A., Bernard, C., Brambilla, N., Brown, N., DeTar, C., El-Khadra, A. X., Gámiz, E., Gottlieb, Steven, Heller, U. M., Komijani, J., Kronfeld, A. S., Laiho, J., Mackenzie, P. M., Neil, E. T., Simone, J. N., Sugar, R. L., Toussaint, D., Van de Water, R. S., and Vairo, A.
- Subjects
High Energy Physics - Lattice ,High Energy Physics::Lattice ,Nuclear Theory ,High Energy Physics::Phenomenology ,High Energy Physics - Lattice (hep-lat) ,FOS: Physical sciences ,High Energy Physics::Experiment ,Nuclear Experiment - Abstract
We describe a recent lattice-QCD calculation of the leptonic decay constants of heavy-light pseudoscalar mesons containing charm and bottom quarks and of the masses of the up, down, strange, charm, and bottom quarks. Results for these quantities are of the highest precision to date. Calculations use 24 isospin-symmetric ensembles of gauge-field configurations with six different lattice spacings as small as approximately 0.03 fm and several values of the light quark masses down to physical values of the average up- and down-sea-quark masses. We use the highly-improved staggered quark (HISQ) formulation for valence and sea quarks, including the bottom quark. The analysis employs heavy-quark effective theory (HQET). A novel HQET method is used in the determination of the quark masses., Comment: Talk presented CIPANP2018. 11 pages, LaTeX, 8 pdf figures
- Published
- 2018
- Full Text
- View/download PDF
23. Short-distance matrix elements for D0 -meson mixing from Nf=2+1 lattice QCDde Short-distance matrix elements for D0 -meson mixing from Nf=2+1 lattice QCD
- Author
-
Bazavov, A., Bernard, C., Bouchard, C. M., Chang, C. C., DeTar, C., Du, D., El-Khadra, A. X., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Kronfeld, A. S., Laiho, J., Mackenzie, P. B., Neil, E. T., Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, R.
- Subjects
ddc - Published
- 2017
24. $B_s \to K \ell\nu$ form factors with 2+1 flavors
- Author
-
Lattice, Fermilab, Collaborations, MILC, Liu, Yuzhi, Bailey, Jon A., Bazavov, A., Bernard, C., Bouchard, C. M., DeTar, C., Du, Daping, El-Khadra, A. X., Freeland, E. D., Gámiz, E., Gelzer, Z., Gottlieb, Steven, Heller, U. M., Kronfeld, A. S., Laiho, J., Mackenzie, P. B., Meurice, Y., Neil, E. T., Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Lattice ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment - Abstract
Using the MILC 2+1 flavor asqtad quark action ensembles, we are calculating the form factors $f_0$ and $f_+$ for the semileptonic $B_s \rightarrow K \ell\nu$ decay. A total of six ensembles with lattice spacing from $\approx0.12$ to 0.06 fm are being used. At the coarsest and finest lattice spacings, the light quark mass $m'_l$ is one-tenth the strange quark mass $m'_s$. At the intermediate lattice spacing, the ratio $m'_l/m'_s$ ranges from 0.05 to 0.2. The valence $b$ quark is treated using the Sheikholeslami-Wohlert Wilson-clover action with the Fermilab interpretation. The other valence quarks use the asqtad action. When combined with (future) measurements from the LHCb and Belle II experiments, these calculations will provide an alternate determination of the CKM matrix element $|V_{ub}|$., Comment: 8 pages, 6 figures, to appear in the Proceedings of Lattice 2017, June 18-24, Granada, Spain
- Published
- 2017
25. Short-distance matrix elements for $D^0$-meson mixing for $N_f=2+1$ lattice QCD
- Author
-
Bazavov, A., Bernard, C., Bouchard, C. M., Chang, C. C., DeTar, C., Du, D., El-Khadra, A. X., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Kronfeld, A. S., Laiho, J., Mackenzie, P. B., Neil, E. T., Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, R.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Lattice ,High Energy Physics - Phenomenology (hep-ph) ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics - Lattice (hep-lat) ,FOS: Physical sciences ,High Energy Physics::Experiment ,High Energy Physics - Experiment - Abstract
We calculate in three-flavor lattice QCD the short-distance hadronic matrix elements of all five $\Delta C=2$ four-fermion operators that contribute to neutral $D$-meson mixing both in and beyond the Standard Model. We use the MILC Collaboration's $N_f = 2+1$ lattice gauge-field configurations generated with asqtad-improved staggered sea quarks. We also employ the asqtad action for the valence light quarks and use the clover action with the Fermilab interpretation for the charm quark. We analyze a large set of ensembles with pions as light as $M_\pi \approx 180$ MeV and lattice spacings as fine as $a\approx 0.045$ fm, thereby enabling good control over the extrapolation to the physical pion mass and continuum limit. We obtain for the matrix elements in the $\overline{\text{MS}}$-NDR scheme using the choice of evanescent operators proposed by Beneke \emph{et al.}, evaluated at 3 GeV, $\langle D^0|\mathcal{O}_i|\bar{D}^0 \rangle = \{0.0805(55)(16), -0.1561(70)(31), 0.0464(31)(9), 0.2747(129)(55), 0.1035(71)(21)\}~\text{GeV}^4$ ($i=1$--5). The errors shown are from statistics and lattice systematics, and the omission of charmed sea quarks, respectively. To illustrate the utility of our matrix-element results, we place bounds on the scale of CP-violating new physics in $D^0$~mixing, finding lower limits of about 10--50$\times 10^3$ TeV for couplings of $\mathrm{O}(1)$. To enable our results to be employed in more sophisticated or model-specific phenomenological studies, we provide the correlations among our matrix-element results. For convenience, we also present numerical results in the other commonly-used scheme of Buras, Misiak, and Urban., Comment: Published version, 42 pages, 18 figures
- Published
- 2017
- Full Text
- View/download PDF
26. B(s)0-mixing matrix elements from lattice QCD for the Standard Model and beyond
- Author
-
Bazavov, A., Bernard, C., Bouchard, C.M., Chang, C.C., DeTar, C., Du, Daping, El-Khadra, A.X., Freeland, E.D., Gámiz, E., Gottlieb, Steven, Heller, U.M., Kronfeld, A.S., Laiho, J., Mackenzie, P.B., Neil, E.T., Simone, J., Sugar, R., Toussaint, D., Van de Water, R.S., and Zhou, Ran
- Subjects
High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment - Abstract
We calculate—for the first time in three-flavor lattice QCD—the hadronic matrix elements of all five local operators that contribute to neutral B0- and Bs-meson mixing in and beyond the Standard Model. We present a complete error budget for each matrix element and also provide the full set of correlations among the matrix elements. We also present the corresponding bag parameters and their correlations, as well as specific combinations of the mixing matrix elements that enter the expression for the neutral B-meson width difference. We obtain the most precise determination to date of the SU(3)-breaking ratio ξ=1.206(18)(6), where the second error stems from the omission of charm-sea quarks, while the first encompasses all other uncertainties. The threefold reduction in total uncertainty, relative to the 2013 Flavor Lattice Averaging Group results, tightens the constraint from B mixing on the Cabibbo-Kobayashi-Maskawa (CKM) unitarity triangle. Our calculation employs gauge-field ensembles generated by the MILC Collaboration with four lattice spacings and pion masses close to the physical value. We use the asqtad-improved staggered action for the light-valence quarks and the Fermilab method for the bottom quark. We use heavy-light meson chiral perturbation theory modified to include lattice-spacing effects to extrapolate the five matrix elements to the physical point. We combine our results with experimental measurements of the neutral B-meson oscillation frequencies to determine the CKM matrix elements |Vtd|=8.00(34)(8)×10−3, |Vts|=39.0(1.2)(0.4)×10−3, and |Vtd/Vts|=0.2052(31)(10), which differ from CKM-unitarity expectations by about 2σ. These results and others from flavor-changing-neutral currents point towards an emerging tension between weak processes that are mediated at the loop and tree levels.
- Published
- 2016
27. Precise B, Bs, and Bc meson spectroscopy from full lattice QCD
- Author
-
Gregory, E.B., Davies, C.T.H., Kendall, I.D., Koponen, J., Wong, K., Follana, E., Gámiz, E., Lepage, G.P., Müller, E.H., Na, H., and Shigemitsu, J.
- Subjects
High Energy Physics::Lattice ,Nuclear Theory ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment ,Nuclear Experiment - Abstract
We give the first accurate results for B and Bs meson masses from lattice QCD including the effect of u, d, and s sea quarks, and we improve an earlier value for the Bc meson mass. By using the highly improved staggered quark (HISQ) action for u=d, s, and c quarks and NRQCD for the b quarks, we are able to achieve an accuracy in the masses of around 10 MeV. Our results are: mB 1/4 5:291ð18Þ GeV, mBs 1/4 5:363ð11Þ GeV, and mBc 1/4 6:280ð10Þ GeV. Note that all QCD parameters here are tuned from other calculations, so these are parameter free-tests of QCD against experiment. We also give scalar, B0s0 and axial-vector, Bs1 meson masses. We find these to be slightly below threshold for decay to BK and B0K, respectively.
- Published
- 2016
28. B→Kl+l−decay form factors from three-flavor lattice QCD
- Author
-
Bailey, Jon A., Bazavov, A., Bernard, C., Bouchard, C.M., DeTar, C., Du, Daping, El-Khadra, A.X., Foley, J., Freeland, E.D., Gámiz, E., Gottlieb, Steven, Heller, U.M., Jain, R.D., Komijani, J., Kronfeld, A.S., Laiho, J., Levkova, L., Liu, Yuzhi, Mackenzie, P.B., Meurice, Y., Neil, E.T., Qiu, Si-Wei, Simone, J.N., Sugar, R., Toussaint, D., Van de Water, R.S., and Zhou, Ran
- Subjects
High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment - Abstract
We compute the form factors for the B→Kl+l− semileptonic decay process in lattice QCD using gauge-field ensembles with 2+1 flavors of sea quark, generated by the MILC Collaboration. The ensembles span lattice spacings from 0.12 to 0.045 fm and have multiple sea-quark masses to help control the chiral extrapolation. The asqtad improved staggered action is used for the light valence and sea quarks, and the clover action with the Fermilab interpretation is used for the heavy b quark. We present results for the form factors f+(q2), f0(q2), and fT(q2), where q2 is the momentum transfer, together with a comprehensive examination of systematic errors. Lattice QCD determines the form factors for a limited range of q2, and we use the model-independent z expansion to cover the whole kinematically allowed range. We present our final form-factor results as coefficients of the z expansion and the correlations between them, where the errors on the coefficients include statistical and all systematic uncertainties. We use this complete description of the form factors to test QCD predictions of the form factors at high and low q2.
- Published
- 2016
29. Decay constants $f_B$ and $f_{B_s}$ and quark masses $m_b$ and $m_c$ from HISQ simulations
- Author
-
Komijani, J., Bazavov, A., Bernard, C., Brambilla, N., Brown, N., DeTar, C., Du, D., El-Khadra, A. X., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Kronfeld, A. S., Laiho, J., Mackenzie, P. B., Monahan, C., Na, Heechang, Neil, E. T., Simone, J. N., Sugar, R. L., Toussaint, D., Vairo, A., and Van de Water, R. S.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Lattice ,High Energy Physics - Phenomenology (hep-ph) ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics - Lattice (hep-lat) ,FOS: Physical sciences ,High Energy Physics::Experiment - Abstract
We present a progress report on our calculation of the decay constants $f_B$ and $f_{B_s}$ from lattice-QCD simulations with highly-improved staggered quarks. Simulations are carried out with several heavy valence-quark masses on $(2+1+1)$-flavor ensembles that include charm sea quarks. We include data at six lattice spacings and several light sea-quark masses, including an approximately physical-mass ensemble at all but the smallest lattice spacing, 0.03 fm. This range of parameters provides excellent control of the continuum extrapolation to zero lattice spacing and of heavy-quark discretization errors. Finally, using the heavy-quark effective theory expansion we present a method of extracting from the same correlation functions the charm- and bottom-quark masses as well as some low-energy constants appearing in the heavy-quark expansion., Comment: 7 pages, 3 figures, Lattice 2016
- Published
- 2016
- Full Text
- View/download PDF
30. B → πll form factors for new physics searches from lattice QCD
- Author
-
Bailey, Jon A., Bazavov, A., Bernard, C., Bouchard, C.M., DeTar, C., Du, Daping, El-Khadra, A.X., Freeland, E.D., Gámiz, E., Gottlieb, Steven, Heller, U.M., Kronfeld, A.S., Laiho, J., Levkova, L., Liu, Yuzhi, Lunghi, E., Mackenzie, P.B., Meurice, Y., Neil, E., Qiu, Si-Wei, Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R.S., and Zhou, Ran
- Abstract
The rare decay B→πℓ+ℓ− arises from b→d flavor-changing neutral currents and could be sensitive to physics beyond the standard model. Here, we present the first ab initio QCD calculation of the B→π tensor form factor fT. Together with the vector and scalar form factors f+ and f0 from our companion work [J. A. Bailey et al., Phys. Rev. D 92, 014024 (2015)], these parametrize the hadronic contribution to B→π semileptonic decays in any extension of the standard model. We obtain the total branching ratio BR(B+→π+μ+μ−)=20.4(2.1)×10−9 in the standard model, which is the most precise theoretical determination to date, and agrees with the recent measurement from the LHCb experiment [R. Aaij et al., J. High Energy Phys. 12 (2012) 125].
- Published
- 2015
31. B→Dℓν form factors at nonzero recoil and |Vcb| from 2+1-flavor lattice QCD
- Author
-
Bailey, Jon A., Bazavov, A., Bernard, C., Bouchard, C.M., DeTar, C., Du, Daping, El-Khadra, A.X., Foley, J., Freeland, E.D., Gámiz, E., Gottlieb, Steven, Heller, U.M., Komijani, J., Kronfeld, A.S., Laiho, J., Levkova, L., Mackenzie, P.B., Neil, E.T., Qiu, Si-Wei, Simone, J., Sugar, R., Toussaint, D., Van de Water, R.S., and Zhou, Ran
- Subjects
High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment - Abstract
We present the first unquenched lattice-QCD calculation of the hadronic form factors for the exclusive decay B¯→Dℓν¯ at nonzero recoil. We carry out numerical simulations on 14 ensembles of gauge-field configurations generated with 2+1 flavors of asqtad-improved staggered sea quarks. The ensembles encompass a wide range of lattice spacings (approximately 0.045 to 0.12 fm) and ratios of light (up and down) to strange sea-quark masses ranging from 0.05 to 0.4. For the b and c valence quarks we use improved Wilson fermions with the Fermilab interpretation, while for the light valence quarks we use asqtad-improved staggered fermions. We extrapolate our results to the physical point using rooted staggered heavy-light meson chiral perturbation theory. We then parametrize the form factors and extend them to the full kinematic range using model-independent functions based on analyticity and unitarity. We present our final results for f+(q2) and f0(q2), including statistical and systematic errors, as coefficients of a series in the variable z and the covariance matrix between these coefficients. We then fit the lattice form-factor data jointly with the experimentally measured differential decay rate from BABAR to determine the CKM matrix element, |Vcb|=(39.6±1.7QCD+exp±0.2QED)×10−3. As a byproduct of the joint fit we obtain the form factors with improved precision at large recoil. Finally, we use them to update our calculation of the ratio R(D) in the Standard Model, which yields R(D)=0.299(11).
- Published
- 2015
32. Vub| from B→πℓν decays and (2+1)-flavor lattice QCD
- Author
-
Bailey, Jon. A., Bazavov, A., Bernard, C., Bouchard, C.M., DeTar, C., Du, D., El-Khadra, A.X., Foley, J., Freeland, E.D., Gámiz, E., Gottlieb, Steven, Heller, U.M., Komijani, J., Kronfeld, A.S., Laiho, J., Levkova, L., Liu, Yuzhi, Mackenzie, P.B., Meurice, Y., Neil, E., Qiu, Si-Wei, Simone, J.N., Sugar, R., Toussaint, D., Van de Water, R.S., and Zhou, R.
- Subjects
High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment - Abstract
We present a lattice-QCD calculation of the B→πℓν semileptonic form factors and a new determination of the CKM matrix element |Vub|. We use the MILC asqtad (2+1)-flavor lattice configurations at four lattice spacings and light-quark masses down to 1/20 of the physical strange-quark mass. We extrapolate the lattice form factors to the continuum using staggered chiral perturbation theory in the hard-pion and SU(2) limits. We employ a model-independent z parametrization to extrapolate our lattice form factors from large-recoil momentum to the full kinematic range. We introduce a new functional method to propagate information from the chiral-continuum extrapolation to the z expansion. We present our results together with a complete systematic error budget, including a covariance matrix to enable the combination of our form factors with other lattice-QCD and experimental results. To obtain |Vub|, we simultaneously fit the experimental data for the B→πℓν differential decay rate obtained by the BABAR and Belle collaborations together with our lattice form-factor results. We find |Vub|=(3.72±0.16)×10−3, where the error is from the combined fit to lattice plus experiments and includes all sources of uncertainty. Our form-factor results bring the QCD error on |Vub| to the same level as the experimental error. We also provide results for the B→πℓν vector and scalar form factors obtained from the combined lattice and experiment fit, which are more precisely determined than from our lattice-QCD calculation alone. These results can be used in other phenomenological applications and to test other approaches to QCD.
- Published
- 2015
33. $|V_{ub}|$ from $B\to\pi\ell\nu$ decays and (2+1)-flavor lattice QCD
- Author
-
Lattice, Fermilab, Collaborations, MILC, Bailey, Jon A., Bazavov, A., Bernard, C., Bouchard, C. M., DeTar, C., Du, Daping, El-Khadra, A. X., Foley, J., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Komijani, J., Kronfeld, A. S., Laiho, J., Levkova, L., Liu, Yuzhi, Mackenzie, P. B., Meurice, Y., Neil, E. T., Qiu, Si-Wei, Simone, J., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Lattice ,High Energy Physics::Lattice ,High Energy Physics::Experiment ,High Energy Physics - Experiment - Abstract
We present a lattice-QCD calculation of the $B\to\pi\ell\nu$ semileptonic form factors and a new determination of the CKM matrix element $|V_{ub}|$. We use the MILC asqtad 2+1-flavor lattice configurations at four lattice spacings and light-quark masses down to 1/20 of the physical strange-quark mass. We extrapolate the lattice form factors to the continuum using staggered chiral perturbation theory in the hard-pion and SU(2) limits. We employ a model-independent $z$ parameterization to extrapolate our lattice form factors from large-recoil momentum to the full kinematic range. We introduce a new functional method to propagate information from the chiral-continuum extrapolation to the $z$ expansion. We present our results together with a complete systematic error budget, including a covariance matrix to enable the combination of our form factors with other lattice-QCD and experimental results. To obtain $|V_{ub}|$, we simultaneously fit the experimental data for the $B\to\pi\ell\nu$ differential decay rate obtained by the BaBar and Belle collaborations together with our lattice form-factor results. We find $|V_{ub}|=(3.72\pm 0.16)\times 10^{-3}$ where the error is from the combined fit to lattice plus experiments and includes all sources of uncertainty. Our form-factor results bring the QCD error on $|V_{ub}|$ to the same level as the experimental error. We also provide results for the $B\to\pi\ell\nu$ vector and scalar form factors obtained from the combined lattice and experiment fit, which are more precisely-determined than from our lattice-QCD calculation alone. These results can be used in other phenomenological applications and to test other approaches to QCD., Comment: 63 pages, 48 figures; v2: minor changes in Sec. IV, Table X, modified Fig.14,16, results unchanged
- Published
- 2015
34. The $B \to D \ell \nu$ form factors at nonzero recoil and $|V_{cb}|$ from $2+1$-flavor lattice QCD
- Author
-
Lattice, Fermilab, Collaborations, MILC, Bailey, Jon A., Bazavov, A., Bernard, C., Bouchard, C. M., DeTar, C., Du, Daping, El-Khadra, A. X., Foley, J., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Komijani, J., Kronfeld, A. S., Laiho, J., Levkova, L., Mackenzie, P. B., Neil, E. T., Qiu, Si-Wei, Simone, J., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Lattice ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment - Abstract
We present the first unquenched lattice-QCD calculation of the hadronic form factors for the exclusive decay $\overline{B} \rightarrow D \ell \overline{\nu}$ at nonzero recoil. We carry out numerical simulations on fourteen ensembles of gauge-field configurations generated with 2+1 flavors of asqtad-improved staggered sea quarks. The ensembles encompass a wide range of lattice spacings (approximately 0.045 to 0.12 fm) and ratios of light (up and down) to strange sea-quark masses ranging from 0.05 to 0.4. For the $b$ and $c$ valence quarks we use improved Wilson fermions with the Fermilab interpretation, while for the light valence quarks we use asqtad-improved staggered fermions. We extrapolate our results to the physical point using rooted staggered heavy-light meson chiral perturbation theory. We then parameterize the form factors and extend them to the full kinematic range using model-independent functions based on analyticity and unitarity. We present our final results for $f_+(q^2)$ and $f_0(q^2)$, including statistical and systematic errors, as coefficients of a series in the variable $z$ and the covariance matrix between these coefficients. We then fit the lattice form-factor data jointly with the experimentally measured differential decay rate from BaBar to determine the CKM matrix element, $|V_{cb}|=(39.6 \pm 1.7_{\rm QCD+exp} \pm 0.2_{\rm QED})\times 10^{-3}$. As a byproduct of the joint fit we obtain the form factors with improved precision at large recoil. Finally, we use them to update our calculation of the ratio $R(D)$ in the Standard Model, which yields $R(D) = 0.299(11)$., Comment: 47 pages, 32 figures
- Published
- 2015
35. $B\to Kl^+l^-$ decay form factors from three-flavor lattice QCD
- Author
-
Bailey, Jon A., Bazavov, A., Bernard, C., Bouchard, C. M., DeTar, C., Du, Daping, El-Khadra, A. X., Foley, J., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Jain, R. D., Komijani, J., Kronfeld, A. S., Laiho, J., Levkova, L., Liu, Yuzhi, Mackenzie, P. B., Meurice, Y., Neil, E. T., Qiu, Si-Wei, Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Lattice ,High Energy Physics - Phenomenology (hep-ph) ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics - Lattice (hep-lat) ,FOS: Physical sciences ,High Energy Physics::Experiment - Abstract
We compute the form factors for the $B \to Kl^+l^-$ semileptonic decay process in lattice QCD using gauge-field ensembles with 2+1 flavors of sea quark, generated by the MILC Collaboration. The ensembles span lattice spacings from 0.12 to 0.045 fm and have multiple sea-quark masses to help control the chiral extrapolation. The asqtad improved staggered action is used for the light valence and sea quarks, and the clover action with the Fermilab interpretation is used for the heavy $b$ quark. We present results for the form factors $f_+(q^2)$, $f_0(q^2)$, and $f_T(q^2)$, where $q^2$ is the momentum transfer, together with a comprehensive examination of systematic errors. Lattice QCD determines the form factors for a limited range of $q^2$, and we use the model-independent $z$ expansion to cover the whole kinematically allowed range. We present our final form-factor results as coefficients of the $z$ expansion and the correlations between them, where the errors on the coefficients include statistical and all systematic uncertainties. We use this complete description of the form factors to test QCD predictions of the form factors at high and low $q^2$. We also compare a Standard-Model calculation of the branching ratio for $B \to Kl^+l^-$ with experimental data., Comment: V2: Fig.7 added. Typos text corrected. Reference added. Version published in Phys. Rev. D
- Published
- 2015
- Full Text
- View/download PDF
36. Update of |Vcb| from the B¯→D*ℓν¯ form factor at zero recoil with three-flavor lattice QCD
- Author
-
Bailey, Jon A., Bazavov, A., Bernard, C., Bouchard, C.M., DeTar, C., Du, Daping, El-Khadra, A.X., Foley, J., Freeland, E.D., Gámiz, E., Gottlieb, Steven, Heller, U.M., Kronfeld, A.S., Laiho, J., Levkova, L., Mackenzie, P.B., Neil, E.T., Qiu, Si-Wei, Simone, J., Sugar, R., Toussaint, D., Van de Water, R.S., and Zhou, Ran
- Subjects
High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment - Abstract
We compute the zero-recoil form factor for the semileptonic decay B¯0→D*+ℓ−ν¯ (and modes related by isospin and charge conjugation) using lattice QCD with three flavors of sea quarks. We use an improved staggered action for the light valence and sea quarks (the MILC asqtad configurations), and the Fermilab action for the heavy quarks. Our calculations incorporate higher statistics, finer lattice spacings, and lighter quark masses than our 2008 work. As a byproduct of tuning the new data set, we obtain the Ds and Bs hyperfine splittings with few-MeV accuracy. For the zero-recoil form factor, we obtain F(1)=0.906(4)(12), where the first error is statistical and the second is the sum in quadrature of all systematic errors. With the latest Heavy Flavor Averaging Group average of experimental results and a cautious treatment of QED effects, we find |Vcb|=(39.04±0.49expt±0.53QCD±0.19QED)×10−3. The QCD error is now commensurate with the experimental error.
- Published
- 2014
37. The $D_s$, $D^+$, $B_s$ and $B$ decay constants from $2+1$ flavor lattice QCD
- Author
-
Bazavov, A., Bernard, C., Bouchard, C., DeTar, C., Du, D., El-Khadra, A. X., Foley, J., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Kim, J., Komijani, J., Kronfeld, A. S., Laiho, J., Levkova, L., Mackenzie, P. B., Mohler, D., Neil, E. T., Oktay, M. B., Qiu, S., Simone, J. N., Sugar, R. L., Toussaint, D., Van de Water, R. S., and Zhou, R.
- Subjects
High Energy Physics - Lattice ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics - Lattice (hep-lat) ,FOS: Physical sciences ,High Energy Physics::Experiment - Abstract
We present a study of the $D$ and $B$ leptonic decay constants on the MILC $N_f=2+1$ asqtad gauge ensembles using asqtad-improved staggered light quarks and clover heavy quarks in the Fermilab interpretation. Our previous analysis \cite{Bazavov:2011aa} computed the decay constants at lattice spacings $a \approx 0.14, 0.11$ and $0.083$ fm. We have extended the simulations to finer $a \approx 0.058$ and $0.043$ fm lattice spacings, and have also increased statistics; this allows us to address many important sources of uncertainty. Technical advances include a two-step two-point fit procedure, better tuning of the heavy quark masses and a better determination of the axial-vector current matching. The present analysis remains blinded, so here we focus on the improvements and their predicted impact on the error budget compared to the prior analysis., Comment: LATTICE 2013; added missing .bbl file
- Published
- 2014
- Full Text
- View/download PDF
38. Update on a short-distance D^0-meson mixing calculation with $N_f=2+1$ flavors
- Author
-
Chang, C. C., Bernard, C., Bouchard, C. M., El-Khadra, A. X., Freeland, E. D., Gámiz, E., Kronfeld, A. S., Laiho, J., and Van de Water, R. S.
- Subjects
High Energy Physics - Lattice ,High Energy Physics::Lattice ,Nuclear Theory ,High Energy Physics::Phenomenology ,High Energy Physics - Lattice (hep-lat) ,FOS: Physical sciences ,High Energy Physics::Experiment - Abstract
We present an update on our calculation of the short-distance $D^0$-meson mixing hadronic matrix elements. The analysis is performed on the MILC collaboration's $N_f=2+1$ asqtad configurations. We use asqtad light valence quarks and the Sheikoleslami-Wohlert action with the Fermilab interpretation for the valence charm quark. SU(3), partially quenched, rooted, staggered heavy-meson chiral perturbation theory is used to extrapolate to the chiral-continuum limit. Systematic errors arising from the chiral-continuum extrapolation, heavy-quark discretization, and quark-mass uncertainties are folded into the statistical errors from the chiral-continuum fits with methods of Bayesian inference. A preliminary error budget for all five operators is presented., Comment: 7 pages, 1 figure, LATTICE2014 proceedings
- Published
- 2014
- Full Text
- View/download PDF
39. Determination of $|V_{us}|$ from a lattice-QCD calculation of the $K\to\pi\ell\nu$ semileptonic form factor with physical quark masses
- Author
-
Bazavov, A., Bernard, C., Bouchard, C., DeTar, C., Du, D., El-Khadra, A. X., Foley, J., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Kim, J., Kronfeld, A. S., Laiho, J., Levkova, L., Mackenzie, P. B., Neil, E. T., Oktay, M. B., Qiu, Si-Wei, Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Lattice ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment ,High Energy Physics - Experiment - Abstract
We calculate the kaon semileptonic form factor $f_+(0)$ from lattice QCD, working, for the first time, at the physical light-quark masses. We use gauge configurations generated by the MILC collaboration with $N_f=2+1+1$ flavors of sea quarks, which incorporate the effects of dynamical charm quarks as well as those of up, down, and strange. We employ data at three lattice spacings to extrapolate to the continuum limit. Our result, $f_+(0) = 0.9704(32)$, where the error is the total statistical plus systematic uncertainty added in quadrature, is the most precise determination to date. Combining our result with the latest experimental measurements of $K$ semileptonic decays, one obtains the Cabibbo-Kobayashi-Maskawa matrix element $|V_{us}|=0.22290(74)(52)$, where the first error is from $f_+(0)$ and the second one is from experiment. In the first-row test of Cabibbo-Kobayashi-Maskawa unitarity, the error stemming from $|V_{us}|$ is now comparable to that from $|V_{ud}|$., Comment: 6 pages, 2 figures; version published in PRL
- Published
- 2013
40. Charmed and strange pseudoscalar meson decay constants from HISQ simulations
- Author
-
Bazavov, A., Bernard, C., Bouchard, C., Carleton DeTar, Du, D., El-Khadra, A. X., Foley, J., Freeland, E. D., Gámiz, E., Gottlieb, S., Heller, U. M., Kim, J., Komijani, J., Kronfeld, A. S., Laiho, J., Levkova, L., Mackenzie, P. B., Neil, E. T., Simone, J. N., Sugar, R. L., Toussaint, D., Water, R. S., and Zhou, R.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,High Energy Physics - Lattice ,High Energy Physics::Lattice ,High Energy Physics - Lattice (hep-lat) ,High Energy Physics::Phenomenology ,FOS: Physical sciences ,High Energy Physics::Experiment - Abstract
We update our determinations of $f_{D^+}$, $f_{D_s}$, $f_K$, and quark mass ratios from simulations with four flavors of HISQ dynamical quarks. The availability of ensembles with light quarks near their physical mass means that we can extract physical results with only small corrections for valence- and sea-quark mass mistunings instead of a chiral extrapolation. The adjusted valence-quark masses and lattice spacings may be determined from an ensemble-by-ensemble analysis, and the results for the quark mass ratios then extrapolated to the continuum limit. Our central values of the charmed meson decay constants, however, come from an alternative analysis, which uses staggered chiral perturbation theory for the heavy-light mesons, and allows us to incorporate data at unphysical quark masses where statistical errors are often smaller. A jackknife analysis propagated through all of these steps takes account of the correlations among all the quantities used in the analysis. Systematic errors from the finite spatial size and EM effects are estimated by varying the parameters in the analysis, and systematic errors from the assumptions in the continuum extrapolation are estimated from the spread of values from different extrapolations., presented at Lattice 2013, Mainz, Germany, July 29 - August 3, 2013. 14 pages, 7 figures
- Published
- 2013
41. Heavy-meson semileptonic decays for the Standard Model and beyond
- Author
-
Liu, Yuzhi, Meurice, Y., Toussaint, D., Sugar, R., Mackenzie, P. B., Bernard, C., Oktay, M. B., Levkova, L., Heller, U. M., ran zhou, Gottlieb, Steven, Kim, Jongjeong, Kronfeld, A. S., El-Khadra, A. X., Laiho, J., Mohler, D., Water, R. S., Du, Daping, Qiu, Si-Wei, Bazavov, A., Detar, C., Freeland, E. D., Foley, J., Chris Bouchard, Neil, E. T., Bailey, Jon A., Jain, R. D., and Gámiz, E.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Lattice ,High Energy Physics - Phenomenology (hep-ph) ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics - Lattice (hep-lat) ,FOS: Physical sciences ,High Energy Physics::Experiment - Abstract
We calculate the form factors for the semileptonic decays $B_s\to K\ell\nu$ and $B\to K\ell\ell$ with lattice QCD. We work at several lattice spacings and a range of light quark masses, using the MILC 2+1-flavor asqtad ensembles. We use the Fermilab method for the $b$ quark. We obtain chiral-continuum extrapolations for $E_K$ up to $\sim1.2$ GeV and then extend to the entire kinematic range with the model-independent $z$ expansion., Comment: 7. pp, 6 figs. Presented at the 31st International Symposium on Lattice Field Theory - LATTICE 2013, July 29 - August 3, 2013, Mainz, Germany
- Published
- 2013
- Full Text
- View/download PDF
42. Matrix Elements for $D$- and $B$-Mixing from 2+1 Flavor Lattice QCD
- Author
-
Chang, C. C., Bernard, C., Chris Bouchard, El-Khadra, A. X., Freeland, E. D., Gámiz, E., Kronfeld, A. S., Laiho, J., and Water, R. S.
- Subjects
High Energy Physics - Lattice ,High Energy Physics::Lattice ,Nuclear Theory ,High Energy Physics::Phenomenology ,High Energy Physics - Lattice (hep-lat) ,FOS: Physical sciences ,High Energy Physics::Experiment ,Nuclear Experiment - Abstract
We present the status of our calculation of hadronic matrix elements for $D$- and $B$-meson mixing. We use a large set of the MILC collaboration's $N_f=2+1$ asqtad ensembles, which includes lattice spacings in the range $a\approx0.12$-0.045 fm, and up/down to strange quark mass ratios as low as 0.05. The asqtad action is also employed for the light valence quarks. For the heavy quarks we use the Sheikholeslami-Wohlert action with the Fermilab interpretation. Our calculation covers the complete set of five local operators needed to describe $B$-meson mixing in the Standard Model and Beyond. In the charm sector, our calculation of local mixing matrix elements may be used to constrain new physics models. We present final correlator fit results on the full data set for the $B$-meson mixing project and preliminary fit results for the $D$-meson mixing project., Comment: 7 pages, 4 figures, Lattice 2013 proceedings
- Published
- 2013
- Full Text
- View/download PDF
43. K semileptonic form factor with HISQ fermions at the physical point
- Author
-
Gámiz, E., Bazavov, A., Bernard, C., Bouchard, C., DeTar, C., Du, D., El-Khadra, A. X., Foley, J., Freeland, E. D., Gottlieb, Steven, Heller, U. M., Kim, J., Kronfeld, A. S., Laiho, J., Levkova, L., Mackenzie, P. B., Neil, E. T., Oktay, M. B., Qiu, Si-Wei, Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Lattice (hep-lat) ,FOS: Physical sciences - Abstract
We present results for the form factor $f_+^{K \pi}(0)$, needed to extract the CKM matrix element $|V_{us}|$ from experimental data on semileptonic $K$ decays, on the HISQ $N_f=2+1+1$ MILC configurations. The HISQ action is also used for the valence sector. The data set used for our final result includes three different values of the lattice spacing and data at the physical light quark masses. We discuss the error budget and how this calculation improves on our previous determination of $f_+^{K \pi}(0)$ on the asqtad $N_f=2+1$ MILC configurations., Comment: 7 pages, 1 figure, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, Germany; v2: minor changes
- Published
- 2013
- Full Text
- View/download PDF
44. B -> D* l nu at zero recoil: an update
- Author
-
Bailey, Jon A., Bazavov, A., Bernard, C., Bouchard, C. M., DeTar, C., El-Khadra, A. X., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Hetrick, J. E., Kronfeld, A. S., Laiho, J., Levkova, L., Mackenzie, P. B., Oktay, M. B., Simone, J. N., Sugar, R., Toussaint, D., and Van de Water, R. S.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Lattice ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment - Abstract
We present an update of our calculation of the form factor for B -> D* l nu at zero recoil, with higher statistics and finer lattices. As before, we use the Fermilab action for b and c quarks, the asqtad staggered action for light valence quarks, and the MILC ensembles for gluons and light quarks (L\"uscher-Weisz married to 2+1 rooted staggered sea quarks). In this update, we have reduced the total uncertainty on F(1) from 2.6% to 1.7%. At Lattice2010 we presented a still-blinded result, but this writeup includes the unblinded result from the September 2010 CKM workshop., Comment: 7 pp., 2 figs, presented at Lattice 2010, June 14-19, 2010, Villasimius, Italy
- Published
- 2010
45. La Hidrología Farmacéutica como materia docente de los estudios de Farmacia
- Author
-
Fernández-González, M. Virginia, Gámiz, E., Saura, I., and Delgado, R.
- Subjects
Aguas mineromedicinales ,Mineromedicinal waters ,Peloides ,Hidrología Farmacéutica ,Muds (peloids) ,Pharmaceutical Hydrology - Abstract
Dentro de los estudios que abarca la Licenciatura (futuro Grado) en Farmacia, cabe destacar el interés de la Hidrología Farmacéutica, materia que estudia las aguas mineromedicinales, su origen, propiedades y aplicaciones dentro del campo de la salud, así como los barros preparados con aguas mineromedicinales dotados de actividad terapéutica (peloides). Esta asignatura resulta de gran interés para los estudiantes, ya que en su temario se desarrollan algunos aspectos que el farmacéutico podrá poner en práctica en su futuro profesional., Within the current and the future Degree in Pharmacy studies, it should be emphasized the importance of Pharmaceutical Hydrology, a matter dealing with the mineromedicinal waters, their origin, properties and applications in health care, as well as the muds, prepared with mineromedicinal waters, exerting therapeutic activity (therapeutic muds or peloids). This subject is of great interest for the students, since its program includes some contents that pharmacists will be able to put into practice in their professional activity. In the last decades, the number of scientific papers on this topic has increased noticeably. The study of the natural and mineromedicinal waters and the muds, either as preventive elements or as materials with therapeutic and coadjutant activity, has aroused an enormous interest among both lay people and health-care professionals, due to the benefits that it brings for health. The pharmacist plays a relevant role in the knowledge of this type of therapies and its applications. In this paper, we describe the history of this subject and analyze its scientific contents, as well as the importance of being acquainted with its applications within the training of the future pharmacists.
- Published
- 2010
46. Ciento sesenta años de geología aplicada a la farmacia. En la encrucijada de Bolonia
- Author
-
Delgado Calvo-Flores, Rafael, Delgado Calvo-Flores, Gabriel, Martín García, Juan Manuel, 1973, Gámiz, E., Márquez Crespo, Rocío, and Párraga Martínez, Jesús
- Subjects
Pharmaceutical polymorphism ,Quality control of pharmaceutical materials ,Crystal structure of biomolecules ,Estructura cristalina de las biomoléculas ,Naturaleza de productos sanitarios ,pharmaceutical raw materials of mineral origin ,Polimorfismo farmacéutico ,Nature of pharmaceutical materials ,Control de calidad de productos sanitarios ,materias primas farmacéuticas minerales - Abstract
El estudio de las materias primas farmacéuticas y cosméticas de origen mineral, sus propiedades, métodos de investigación específicos, normas de obligado cumplimiento para el uso y otros nuevos ámbitos y aplicaciones de carácter sanitario que se han ido abriendo con el desarrollo de la Ciencia y la Técnica durante las últimas décadas, ha sido una asignatura de obligada impartición en los estudios de Farmacia hasta la implantación del Nuevo Grado auspiciado por la puesta en práctica del Plan Bolonia. En esta Comunicación se relata la historia de la asignatura, sus diferentes denominaciones y profesores que ha tenido; se analizan en detalle sus contenidos científicos actuales y sus retos futuros: Todo ello en el marco del papel jugado hasta el presente en la Facultad de Farmacia en la formación del farmacéutico, y para componer una base científica y argumental, que permita analizar objetivamente la situación actual y las perspectivas futuras., The study of pharmaceutical and cosmetic mineral raw materials, their properties, their specific research methods, regulating norms and test for their use, and other new applications for the human health that have been opened during the last decades owing to the development of Science and Technology, has been a obligatory subject of teaching in the Pharmacy studies of the Granada University until the implantation of the new studies of Grade promoted by the Bologna Process. This communication relates the history of the subject "Applied Geology to Pharmacy", their different denominations and Professors who have had, analyzes in detail the current scientific content and its future lines of research and challenges. All these discussions in the context of the role that has played until today in the Faculty of Pharmacy as in the training of pharmaceutics. And to compose a scientific basis and line of thinking, which allows to objectively analyze the current situation and future of the subject "Applied Geology to Pharmacy".
- Published
- 2010
47. Estudio morfológico de talcos con microscopio electrónico de barrido (sem): aplicaciones farmacéuticas
- Author
-
Gámiz, E., Soriano, M., Delgado Calvo-Flores, Gabriel, Párraga Martínez, Jesús, and Delgado Calvo-Flores, Rafael
- Subjects
Morphology ,Uso tópico ,SEM (Scanning electron microscopy) ,Talc ,Morfología ,Talco ,Topical use - Abstract
Se estudian con microscopía electrónica de barrido la morfología y la ultramicrofábrica de talcos pulverizados y de preparados comerciales de “polvos de talco”, con el objeto de caracterizarlos para su aplicación Farmacéutica y Cosmética. Se encuentran partículas pequeñas, partículas grandes, agregados y agregados en “bolsa”, con fábricas laminares concéntricas y planares, laminares en dominios y fábricas de agregados. Estas morfologías se adquieren con el proceso de molienda, como consecuencia de la estructura cristalina y de las propiedades físicas (como dureza y exfoliación) del talco. Se consideran idóneas para el uso tópico porque favorecen la aplicación sobre la piel y permiten la adsorción de exudados debido a la porosidad y frecuencia de intersticios., The authors studied with SEM the morphology and ultramicrofabric of powdered talcs and commercial talcum powders in order to characterise them for pharmaceutical and cosmetic use. Small and large particles, aggregates and aggregates in “pockets” were found, with concentric and laminar and planar fabric, laminar fabric in domains and aggregate fabric. These morphologies were acquired during the grinding process, as a consequence of talc crystal structure and other physical properties (such as hardness and cleavage). These morphologies are appropriate for topical use since they favour the talc distribution on the skin and allow the absorption of exudates due to the porosity and frequent interstitial spaces in the talc.
- Published
- 2002
48. Contenido de fibras en polvos de talco de uso tópico
- Author
-
Soriano, M., Delgado, G., Gámiz, E., Párraga, J., and Delgado, R.
- Published
- 1991
49. Estudio de cálculos salivales por técnicas cristalográficas
- Author
-
Gámiz, E., Aguilar, J., and Delgado Calvo-Flores, Rafael
- Abstract
En el presente trabajo se estudian tres cálculos salivales por métodos cristalográficos: Calorimetría diferencial de barrido, microscopía óptica de transmisión, difracción de Rayos-X y microscopía electrónica de barrido. Los resultados son coincidentes en todos los casos. Se trata de apatito y menores cantidades de whitlockita, con estructura en capas. Se consideran posibles soluciones a esta patología., At the present work it has been studied three salivari calculi by different crystalographic methods: Differential scanning calorimetry, polarizing microscope (thin section and grain mouting), X-ray diffraction and scanning electron microscope. AH them provided the same composition: Apatite and whitlockite in concentric layered -fabrico At the paper it has been indicated possible solutions for this patology.
- Published
- 1988
50. Caracterización de polvos de talco por métodos químicos
- Author
-
Sierra, C., Gámiz, E., and Delgado Calvo-Flores, Rafael
- Abstract
Se estudian una serie de talcos comerciales de venta exclusiva y no exclusiva en farmacias, comprobando el grado de pureza de las variedades minerales empleadas y si los indicados polvos cumplen las normas establecidas por la legislación vigente. Los resultados se comparan finalmente con otros obtenidos mediante técnicas diferentes a las propuestas por las farmacopeas., It have been studied a serie of cornmercial talcs to be sold exclusively in pharmacies. We have studied the degree of purity of the used varyties, so as if indicated talcs are as the present legislation say. The results are compared finally with other obtained by different methods of those proposed by the pharmacopos of different countries.
- Published
- 1985
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.