39 results on '"HAWC Collaboration"'
Search Results
2. Cosmic ray spectrum of protons plus helium nuclei between 6 TeV and 158 TeV from HAWC data
- Author
-
HAWC Collaboration, Albert, A., Alfaro, R., Alvarez, C., Camacho, J. R. Angeles, Arteaga-Velázquez, J. C., Arunbabu, K. P., Rojas, D. Avila, Solares, H. A. Ayala, Belmont-Moreno, E., Brisbois, C., Caballero-Mora, K. S., Capistrán, T., Carramiñana, A., Casanova, S., Cotti, U., Cotzomi, J., De la Fuente, E., Hernandez, R. Diaz, DuVernois, M. A., Durocher, M., Díaz-Vélez, J. C., Espinoza, C., Fraija, N., García-González, J. A., Garfias, F., González, M. M., Goodman, J. A., Harding, J. P., Hona, B., Huang, D., Hueyotl-Zahuantitla, F., Hüntemeyer, P., Iriarte, A., Joshi, V., Kieda, D., Kunde, G. J., Lara, A., Lee, W. H., Vargas, H. León, Linnemann, J. T., Longinotti, A. L., Luis-Raya, G., Malone, K., Martinez, O., Martínez-Castro, J., Matthews, J. A., Miranda-Romagnoli, P., Morales-Soto, J. A., Moreno, E., Mostafá, M., Nayerhoda, A., Nellen, L., Newbold, M., Noriega-Papaqui, R., Omodei, N., Pérez-Pérez, E. G., Rho, C. D., Rosa-González, D., Salazar, H., Greus, F. Salesa, Sandoval, A., Serna-Franco, J., Smith, A. J., Springer, R. W., Tollefson, K., Torres, I., Torres-Escobedo, R., Ureña-Mena, F., Villaseñor, L., Wang, X., Willox, E., Zhou, H., de León, C., Álvarez, J. D., Yodh, G. B., and Zepeda, A.
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
A measurement with high statistics of the differential energy spectrum of light elements in cosmic rays, in particular, of primary H plus He nuclei, is reported. The spectrum is presented in the energy range from $6$ to $158$ TeV per nucleus. Data was collected with the High Altitude Water Cherenkov (HAWC) Observatory between June 2015 and June 2019. The analysis was based on a Bayesian unfolding procedure, which was applied on a subsample of vertical HAWC data that was enriched to $82\%$ of events induced by light nuclei. To achieve the mass separation, a cut on the lateral age of air shower data was set guided by predictions of CORSIKA/QGSJET-II-04 simulations. The measured spectrum is consistent with a broken power-law spectrum and shows a kneelike feature at around $E = 24.0^{+3.6}_{-3.1} $ TeV, with a spectral index $\gamma = -2.51 \pm 0.02$ before the break and with $\gamma = -2.83 \pm 0.02$ above it. The feature has a statistical significance of $4.1 \, \sigma$. Within systematic uncertainties, the significance of the spectral break is $0.8 \, \sigma$., Comment: 32 pages, 24 figures, published in Physical Review D
- Published
- 2022
3. Limits on the Diffuse Gamma-Ray Background above 10 TeV with HAWC
- Author
-
HAWC Collaboration, Albert, A., Alfaro, R., Alvarez, C., Arteaga-Velázquez, J. C., Rojas, D. Avila, Solares, H. A. Ayala, Babu, R., Belmont-Moreno, E., Brisbois, C., Caballero-Mora, K. S., Capistrán, T., Carramiñana, A., Casanova, S., Chaparro-Amaro, O., Cotti, U., Cotzomi, J., de León, S. Coutiño, De la Fuente, E., Hernandez, R. Diaz, Dingus, B. L., DuVernois, M. A., Durocher, M., Díaz-Vélez, J. C., Engel, K., Espinoza, C., Fan, K. L., Alonso, M. Fernández, Fraija, N., Garcia, D., García-González, J. A., Garfias, F., González, M. M., Goodman, J. A., Harding, J. P., Hernandez, S., Hinton, J., Huang, D., Hueyotl-Zahuantitla, F., Hüntemeyer, P., Iriarte, A., Joshi, V., Kaufmann, S., Kieda, D., Lara, A., Lee, W. H., Vargas, H. León, Linnemann, J. T., Longinotti, A. L., Luis-Raya, G., Malone, K., Martinez, O., Martínez-Castro, J., Matthews, J. A., Miranda-Romagnoli, P., Morales-Soto, J. A., Moreno, E., Mostafá, M., Nayerhoda, A., Nellen, L., Newbold, M., Nisa, M. U., Noriega-Papaqui, R., Omodei, N., Peisker, A., Araujo, Y. Pérez, Pérez-Pérez, E. G., Rho, C. D., Rosa-González, D., Ruiz-Velasco, E., Salazar, H., Greus, F. Salesa, Sandoval, A., Schneider, M., Serna-Franco, J., Smith, A. J., Son, Y., Springer, R. W., Tibolla, O., Tollefson, K., Torres, I., Torres-Escobedo, R., Turner, R., Ureña-Mena, F., Villaseñor, L., Wang, X., Willox, E., Zhou, H., de León, C., and Álvarez, J. D.
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,FOS: Physical sciences ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The high-energy Diffuse Gamma-Ray Background (DGRB) is expected to be produced by unresolved isotropically distributed astrophysical objects, potentially including dark matter annihilation or decay emissions in galactic or extragalactic structures. The DGRB has only been observed below 1 TeV; above this energy, upper limits have been reported. Observations or stringent limits on the DGRB above this energy could have significant multi-messenger implications, such as constraining the origin of TeV-PeV astrophysical neutrinos detected by IceCube. The High Altitude Water Cherenkov (HAWC) Observatory, located in central Mexico at 4100 m above sea level, is sensitive to gamma rays from a few hundred GeV to several hundred TeV and continuously observes a wide field-of-view (2 sr). With its high-energy reach and large area coverage, HAWC is well-suited to notably improve searches for the DGRB at TeV energies. In this work, strict cuts have been applied to the HAWC dataset to better isolate gamma-ray air showers from background hadronic showers. The sensitivity to the DGRB was then verified using 535 days of Crab data and Monte Carlo simulations, leading to new limits above 10 TeV on the DGRB as well as prospective implications for multi-messenger studies., Comment: 8 pages, 3 figures
- Published
- 2022
- Full Text
- View/download PDF
4. Study of the Very High Energy emission of M87 through its broadband spectral energy distribution
- Author
-
HAWC Collaboration, Alfaro, R., Alvarez, C., Arteaga-Velázquez, J., Rojas, D., Solares, H., Belmont-Moreno, E., Capistrán, T., Carramiñana, A., Casanova, S., Cotti, U., Cotzomi, J., de León, S., De la Fuente, E., de León, C., Hernandez, R., DuVernois, M., Durocher, M., Díaz-Vélez, J., Espinoza, C., Fan, K., Alonso, M., Fraija, N., García-González, J., Garfias, F., González, M., Goodman, J., Harding, J., Huang, D., Hueyotl-Zahuantitla, F., Hüntemeyer, P., Joshi, V., Vargas, H., Linnemann, J., Longinotti, A., Luis-Raya, G., Malone, K., Martinez, O., Martínez-Castro, J., Matthews, J., Miranda-Romagnoli, P., Moreno, E., Mostafá, M., Nayerhoda, A., Nellen, L., Noriega-Papaqui, R., Omodei, N., Peisker, A., Pérez-Pérez, E., Rho, C., Rosa-González, D., Salazar, H., Salazar-Gallegos, D., Greus, F., Sandoval, A., Serna-Franco, J., Son, Y., Springer, R., Tibolla, O., Tollefson, K., Torres, I., Ureña-Mena, F., Villaseñor, L., Wang, X., Willox, E., and Zepeda, A.
- Subjects
HAWC - Abteilung Hinton - Abstract
The radio galaxy M87 is the central dominant galaxy of the Virgo Cluster.Very High Energy (VHE,$\gtrsim 0.1$ TeV) emission, from M87 has been detectedby Imaging Air Cherenkov Telescopes (IACTs ). Recently, marginal evidence forVHE long-term emission has also been observed by the High Altitude WaterCherenkov (HAWC) Observatory, a gamma ray and cosmic-ray detector array locatedin Puebla, Mexico. The mechanism that produces VHE emission in M87 remainsunclear. This emission is originated in its prominent jet, which has beenspatially resolved from radio to X-rays. In this paper, we constructed aspectral energy distribution from radio to gamma rays that is representative ofthe non-flaring activity of the source, and in order to explain the observedemission, we fit it with a lepto-hadronic emission model. We found that thismodel is able to explain non-flaring VHE emission of M87 as well as an orphanflare reported in 2005.
- Published
- 2022
5. Spectrum and Morphology of the Very-High-Energy Source HAWC J2019+368
- Author
-
HAWC Collaboration, Albert, A., Alfaro, R., Alvarez, C., Arteaga-Vel��zquez, J. C., Arunbabu, K. P., Rojas, D. Avila, Solares, H. A. Ayala, Baghmanyan, V., Belmont-Moreno, E., Brisbois, C., Caballero-Mora, K. S., Capistr��n, T., Carrami��ana, A., Casanova, S., Cotzomi, J., de Le��n, S. Coutin��, De la Fuente, E., Hernandez, R. Diaz, Dingus, B. L., DuVernois, M. A., Durocher, M., Engel, K., Espinoza, C., Fraija, N., Garcia, D., Garc��a-Gonz��lez, J. A., Giacinti, G., Gonz��lez, M. M., Goodman, J. A., Harding, J. P., Hinton, J., Hona, B., Huang, D., Hueyotl-Zahuantitla, F., Huentemeyer, P., Jardin-Blicq, A., Joshi, V., Lee, W. H., Vargas, H. Le��n, Linnemann, J. T., Longinotti, A. L., Luis-Raya, G., Lundeen, J., L��pez-Coto, R., Malone, K., Martinez, O., Mart��nez-Castro, J., Matthews, J. A., Miranda-Romagnoli, P., Morales-Soto, J. A., Moreno, E., Mostaf��, M., Nayerhoda, A., Nellen, L., Newbold, M., Nisa, M. U., Noriega-Papaqui, R., Olivera-Nieto, L., Omodei, N., Peisker, A., Araujo, Y. P��rez, P��rez-P��rez, E. G., Rho, C. D., Rosa-Gonz��lez, D., Ruiz-Velasco, E., Salazar, H., Greus, F. Salesa, Sandoval, A., Schneider, M., Schoorlemmer, H., Serna-Franco, J., Smith, A. J., Springer, R. W., Surajbali, P., Tollefson, K., Torres, I., Turner, R., Uren��-Mena, F., Weisgarber, T., Willox, E., Zhou, H., and de Le��n, C.
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics::Galaxy Astrophysics - Abstract
The MGRO J2019+37 region is one of the brightest sources in the sky at TeV energies. It was detected in the 2 year HAWC catalog as 2HWC J2019+367 and here we present a detailed study of this region using data from HAWC. This analysis resolves the region into two sources: HAWC J2019+368 and HAWC J2016+371. We associate HAWC J2016+371 with the evolved supernova remnant CTB 87, although its low significance in this analysis prevents a detailed study at this time. An investigation of the morphology (including possible energy dependent morphology) and spectrum for HAWC J2019+368 is the focus of this work. We associate HAWC J2019+368 with PSR J2021+3651 and its X-ray pulsar wind nebula, the Dragonfly nebula. Modeling the spectrum measured by HAWC and Suzaku reveals a $\sim$7 kyr pulsar and nebula system producing the observed emission at X-ray and ${\gamma}$-ray energies., Comment: Submitted to ApJ: 13 pages, 10 figures
- Published
- 2021
6. Study of the Very High Energy emission of M87 through its broadband spectral energy distribution
- Author
-
HAWC Collaboration, Alfaro, R., Alvarez, C., Arteaga-Velázquez, J. C., Rojas, D. Avila, Solares, H. A. Ayala, Belmont-Moreno, E., Capistrán, T., Carramiñana, A., Casanova, S., Cotti, U., Cotzomi, J., de León, S. Coutiño, De la Fuente, E., de León, C., Hernandez, R. Diaz, DuVernois, M. A., Durocher, M., Díaz-Vélez, J. C., Espinoza, C., Fan, K. L., Alonso, M. Fernández, Fraija, N., García-González, J. A., Garfias, F., González, M. M., Goodman, J. A., Harding, J. P., Huang, D., Hueyotl-Zahuantitla, F., Hüntemeyer, P., Joshi, V., Vargas, H. León, Linnemann, J. T., Longinotti, A. L., Luis-Raya, G., Malone, K., Martinez, O., Martínez-Castro, J., Matthews, J. A., Miranda-Romagnoli, P., Moreno, E., Mostafá, M., Nayerhoda, A., Nellen, L., Noriega-Papaqui, R., Omodei, N., Peisker, A., Pérez-Pérez, E. G., Rho, C. D., Rosa-González, D., Salazar, H., Salazar-Gallegos, D., Greus, F. Salesa, Sandoval, A., Serna-Franco, J., Son, Y., Springer, R. W., Tibolla, O., Tollefson, K., Torres, I., Ureña-Mena, F., Villaseñor, L., Wang, X., Willox, E., and Zepeda, A.
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics::Galaxy Astrophysics - Abstract
The radio galaxy M87 is the central dominant galaxy of the Virgo Cluster. Very High Energy (VHE,$\gtrsim 0.1$ TeV) emission, from M87 has been detected by Imaging Air Cherenkov Telescopes (IACTs ). Recently, marginal evidence for VHE long-term emission has also been observed by the High Altitude Water Cherenkov (HAWC) Observatory, a gamma ray and cosmic-ray detector array located in Puebla, Mexico. The mechanism that produces VHE emission in M87 remains unclear. This emission is originated in its prominent jet, which has been spatially resolved from radio to X-rays. In this paper, we constructed a spectral energy distribution from radio to gamma rays that is representative of the non-flaring activity of the source, and in order to explain the observed emission, we fit it with a lepto-hadronic emission model. We found that this model is able to explain non-flaring VHE emission of M87 as well as an orphan flare reported in 2005., Comment: submitted to ApJ
- Published
- 2021
- Full Text
- View/download PDF
7. Characterization of the background for a neutrino search with the HAWC observatory
- Author
-
HAWC Collaboration, Albert, A., Alfaro, R., Alvarez, C., Camacho, J. R. Angeles, Arteaga-Vel��zquez, J. C., Arunbabu, K. P., Belmont-Moreno, E., Caballero-Mora, K. S., Capistr��n, T., Carrami��ana, A., Casanova, S., Cotti, U., Cotzomi, J., de Le��n, S. Couti��o, De la Fuente, E., Hernandez, R. Diaz, DuVernois, M. A., Durocher, M., Espinoza, C., Fan, K. L., Fraija, N., Garcia, D., Garc��a-Gonz��lez, J. A., Garfias, F., Gonz��lez, M. M., Goodman, J. A., Huang, D., Hueyotl-Zahuantitla, F., H��ntemeyer, P., Iriarte, A., Jardin-Blicq, A., Kieda, D., Lara, A., Lee, W. H., Vargas, H. Le��n, Longinotti, A. L., Luis-Raya, G., Malone, K., Mart��nez-Castro, J., Matthews, J. A., Miranda-Romagnoli, P., Morales-Soto, J. A., Moreno, E., Nayerhoda, A., Nellen, L., Noriega-Papaqui, R., Omodei, N., Peisker, A., P��rez-P��rez, E. G., Rho, C. D., Rosa-Gonz��lez, D., Sandoval, A., Serna-Franco, J., Springer, R. W., Tollefson, K., Torres, I., Torres-Escobedo, R., Ure��a-Mena, F., Villase��or, L., Zhou, H., and de Le��n, C.
- Subjects
Earth-skimming ,Muons ,Neutrinos ,High Energy Physics - Experiment (hep-ex) ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,High Energy Physics::Experiment ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,High Energy Physics - Experiment - Abstract
The close location of the HAWC observatory to the largest volcano in Mexico allows to perform a search for neutrino-induced horizontal muon and tau charged leptons. The section of the volcano located at the horizon reaches values of slant depth larger than 8 km of rock, making it an excellent shield for the cosmic ray horizontal background. We report the search method and background suppression technique developed for the detection of Earth-skimming neutrinos with HAWC, as well as a model that describes the remaining background produced by scattered muons. We show that by increasing the detection energy threshold we could use HAWC to search for neutrino-induced charged leptons., Comment: Replaced with the accepted version. Added the journal reference and DOI
- Published
- 2021
- Full Text
- View/download PDF
8. HAWC Contributions to the 37th International Cosmic Ray Conference (ICRC2021)
- Author
-
HAWC Collaboration
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Works submitted to the 37th International Cosmic Ray Conference. Contents: Operation, Calibration, and Analysis Galactic Gamma-Ray Physics Extra Galactic Gamma-Ray Physics Cosmic-Ray Physics, Comment: HAWC (High Altitude Water Cherenkov Gamma-Ray Observatory) Contributions to the 37th International Cosmic Ray Conference
- Published
- 2021
- Full Text
- View/download PDF
9. Very-high-energy particle acceleration powered by the jets of the microquasar SS 433
- Author
-
HAWC Collaboration, Abeysekara, A. U., Albert, A., Alfaro, R., Alvarez, C., ��lvarez, J. D., Arceo, R., Arteaga-Vel��zquez, J. C., Rojas, D. Avila, Solares, H. A. Ayala, Belmont-Moreno, E., BenZvi, S. Y., Brisbois, C., Caballero-Mora, K. S., Capistr��n, T., Carrami��ana, A., Casanova, S., Castillo, M., Cotti, U., Cotzomi, J., de Le��n, S. Couti��o, De Le��n, C., De la Fuente, E., D��az-V��lez, J. C., Dichiara, S., Dingus, B. L., DuVernois, M. A., Ellsworth, R. W., Engel, K., Espinoza, C., Fang, K., Fleischhack, H., Fraija, N., Galv��n-G��mez, A., Garc��a-Gonz��lez, J. A., Garfias, F., Mu��oz, A. Gonz��lez, Gonz��lez, M. M., Goodman, J. A., Hampel-Arias, Z., Harding, J. P., Hernandez, S., Hinton, J., Hona, B., Hueyotl-Zahuantitla, F., Hui, C. M., H��ntemeyer, P., Iriarte, A., Jardin-Blicq, A., Joshi, V., Kaufmann, S., Kar, P., Kunde, G. J., Lauer, R. J., Lee, W. H., Vargas, H. Le��n, Li, H., Linnemann, J. T., Longinotti, A. L., Luis-Raya, G., L��pez-Coto, R., Malone, K., Marinelli, S. S., Martinez, O., Martinez-Castellanos, I., Mart��nez-Castro, J., Matthews, J. A., Miranda-Romagnoli, P., Moreno, E., Mostaf��, M., Nayerhoda, A., Nellen, L., Newbold, M., Nisa, M. U., Noriega-Papaqui, R., P��rez-P��rez, E. G., Pretz, J., Ren, Z., Rho, C. D., Rivi��re, C., Rosa-Gonz��lez, D., Rosenberg, M., Ruiz-Velasco, E., Greus, F. Salesa, Sandoval, A., Schneider, M., Schoorlemmer, H., Arroyo, M. Seglar, Sinnis, G., Smith, A. J., Springer, R. W., Surajbali, P., Taboada, I., Tibolla, O., Tollefson, K., Torres, I., Vianello, G., Villase��or, L., Weisgarber, T., Werner, F., Westerhoff, S., Wood, J., Yapici, T., Yodh, G., Zepeda, A., Zhang, H., and Zhou, H.
- Subjects
HAWC - Abteilung Hinton ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Multidisciplinary ,High energy particle ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Compact star ,01 natural sciences ,Charged particle ,Luminosity ,Black hole ,Neutron star ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Roche lobe ,Astrophysics - High Energy Astrophysical Phenomena ,Supernova remnant ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
SS 433 is a binary system containing a supergiant star that is overflowing its Roche lobe with matter accreting onto a compact object (either a black hole or neutron star). Two jets of ionized matter with a bulk velocity of $\sim0.26c$ extend from the binary, perpendicular to the line of sight, and terminate inside W50, a supernova remnant that is being distorted by the jets. SS 433 differs from other microquasars in that the accretion is believed to be super-Eddington, and the luminosity of the system is $\sim10^{40}$ erg s$^{-1}$. The lobes of W50 in which the jets terminate, about 40 pc from the central source, are expected to accelerate charged particles, and indeed radio and X-ray emission consistent with electron synchrotron emission in a magnetic field have been observed. At higher energies (>100 GeV), the particle fluxes of $\gamma$ rays from X-ray hotspots around SS 433 have been reported as flux upper limits. In this energy regime, it has been unclear whether the emission is dominated by electrons that are interacting with photons from the cosmic microwave background through inverse-Compton scattering or by protons interacting with the ambient gas. Here we report TeV $\gamma$-ray observations of the SS 433/W50 system where the lobes are spatially resolved. The TeV emission is localized to structures in the lobes, far from the center of the system where the jets are formed. We have measured photon energies of at least 25 TeV, and these are certainly not Doppler boosted, because of the viewing geometry. We conclude that the emission from radio to TeV energies is consistent with a single population of electrons with energies extending to at least hundreds of TeV in a magnetic field of $\sim16$~micro-Gauss., Comment: Preprint version of Nature paper. Contacts: S. BenZvi, B. Dingus, K. Fang, C.D. Rho , H. Zhang, H. Zhou
- Published
- 2018
- Full Text
- View/download PDF
10. Constraints on spin-dependent dark matter scattering with long-lived mediators from TeV observations of the Sun with HAWC
- Author
-
Albert, A., Alfaro, R., Alvarez, C., Arceo, R., Arteaga-Velázquez, J. C., Avila Rojas, D., Ayala Solares, H. A., Belmont-Moreno, E., BenZvi, S. Y., Brisbois, C., Caballero-Mora, K. S., Capistrán, T., Carramiñana, A., Casanova, S., Castillo, M., Cotzomi, J., Coutiño de León, S., De León, C., De la Fuente, E., Dichiara, S., Dingus, B. L., DuVernois, M. A., Díaz-Vélez, J. C., Engel, K., Enríquez-Rivera, O., Espinoza, C., Fleischhack, H., Fraija, N., García-González, J. A., Garfias, F., González, M. M., Goodman, J. A., Hampel-Arias, Z., Harding, J. P., Hernandez, S., Hona, B., Hueyotl-Zahuantitla, F., Hüntemeyer, P., Iriarte, A., Jardin-Blicq, A., Joshi, V., Kaufmann, S., León Vargas, H., Luis-Raya, G., Lundeen, J., López-Coto, R., Malone, K., Marinelli, S. S., Martinez, O., Martinez-Castellanos, I., Martínez-Castro, J., Miranda-Romagnoli, P., Moreno, E., Mostafá, M., Nayerhoda, A., Nellen, L., Newbold, M., Nisa, M. U., Noriega-Papaqui, R., Pretz, J., Pérez-Pérez, E. G., Ren, Z., Rho, C. D., Rivière, C., Rosa-González, D., Rosenberg, M., Ruiz-Velasco, E., Salazar, H., Salesa Greus, F., Sandoval, A., Schneider, M., Seglar Arroyo, M., Sinnis, G., Smith, A. J., Springer, R. W., Surajbali, P., Taboada, I., Tibolla, O., Tollefson, K., Torres, I., Villaseñor, L., Weisgarber, T., Westerhoff, S., Wisher, I. G., Wood, J., Yapici, T., Zepeda, A., Zhou, H., Álvarez, J. D., Beacom, J. F., Linden, T., Ng, K. C. Y., Peter, A. H. G., Zhou, B., HAWC Collaboration, Leane, Rebecca K, Massachusetts Institute of Technology. Center for Theoretical Physics, Massachusetts Institute of Technology. Laboratory for Nuclear Science, Leane, Rebecca K, and HAWC Collaboration
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,HAWC - Abteilung Hinton ,Elastic scattering ,Physics ,Annihilation ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Physics beyond the Standard Model ,Dark matter ,Gamma ray ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,7. Clean energy ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Astrophysics - Solar and Stellar Astrophysics ,WIMP ,Orders of magnitude (time) ,13. Climate action ,0103 physical sciences ,Astrophysics - High Energy Astrophysical Phenomena ,010306 general physics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Cherenkov radiation - Abstract
We analyze the Sun as a source for the indirect detection of dark matter through a search for gamma rays from the solar disk. Capture of dark matter by elastic interactions with the solar nuclei followed by annihilation to long-lived mediators can produce a detectable gamma-ray flux. We search 3 years of data from the High Altitude Water Cherenkov (HAWC) observatory and find no statistically significant detection of TeV gamma-ray emission from the Sun. Using this, we constrain the spin-dependent elastic scattering cross section of dark matter with protons for dark matter masses above 1 TeV, assuming a sufficiently long-lived mediator. The results complement constraints obtained from Fermi-LAT observations of the Sun and together cover WIMP masses between 4 and 10^{6} GeV. In the optimal scenario, the cross-section constraints for mediator decays to gamma rays can be as strong as ∼10^{-45} cm^{2}, which is more than 4 orders of magnitude stronger than current direct-detection experiments for a 1 TeV dark matter mass. The cross-section constraints at higher masses are even better, nearly 7 orders of magnitude better than the current direct-detection constraints for a 100 TeV dark matter mass. This demonstration of sensitivity encourages detailed development of theoretical models in light of these powerful new constraints., United States. Department of Energy (Grant DESC00012567), United States. Department of Energy (Grant DE-SC0013999)
- Published
- 2018
- Full Text
- View/download PDF
11. Unbiased Long-Term Monitoring at TeV Energies
- Author
-
González, María Magdalena, Dorner, Daniela, Bretz, Thomas, Garcia-Gonzalez, Jose Andres, FACT Collaboration, HAWC Collaboration, and M[at]TE Collaboration
- Subjects
ddc:520 - Abstract
Galaxies 7(2), 51 (2019). doi:10.3390/galaxies7020051, Published by MDPI, Basel
- Published
- 2019
- Full Text
- View/download PDF
12. All-sky Measurement of the Anisotropy of Cosmic Rays at 10 TeV and Mapping of the Local Interstellar Magnetic Field
- Author
-
HAWC Collaboration, Abeysekara, A. U., Brisbois, C., Becker, K. -H., Tjus, J. Becker, BenZvi, S., Berley, D., Bernardini, E., Besson, D. Z., Binder, G., Bindig, D., Blaufuss, E., Blot, S., Capistrán, T., Bohm, C., Börner, M., Bos, F., Böser, S., Botner, O., Bourbeau, E., Bourbeau, J., Bradascio, F., Braun, J., Bretz, Hans-Peter, Carramiñana, A., Bron, S., Brostean-Kaiser, J., Burgman, A., Busse, R. S., Carver, T., Chen, C., Cheung, E., Chirkin, D., Clark, K., Classen, L., Casanova, S., Collin, G. H., Conrad, J. M., Coppin, P., Correa, P., Cowen, D. F., Cross, R., Dave, P., Day, M., de André, J. P. A. M., De Clercq, C., Cotti, U., DeLaunay, J. J., Dembinski, H., Deoskar, K., De Ridder, S., Desiati, P., de Vries, K. D., de Wasseige, G., de With, M., DeYoung, T., Díaz-Vélez, J. C., Cotzomi, J., Dujmovic, H., Dunkman, M., Dvorak, E., Eberhardt, B., Ehrhardt, T., Eichmann, B., Eller, P., Evenson, P. A., Fahey, S., Fazely, A. R., Felde, J., Filimonov, K., Finley, C., Franckowiak, A., Friedman, E., Fritz, A., Gaisser, T. K., Gallagher, J., Ganster, E., Garrappa, S., De León, C., Gerhardt, L., Ghorbani, K., Giang, W., Glauch, T., Glüsenkamp, T., Goldschmidt, A., Gonzalez, J. G., Grant, D., Griffith, Z., Haack, C., De la Fuente, E., Hallgren, A., Halve, L., Halzen, F., Hanson, K., Hebecker, D., Heereman, D., Helbing, K., Hellauer, R., Hickford, S., Hignight, J., Dichiara, S., Hill, G. C., Hoffman, K. D., Hoffmann, R., Hoinka, T., Hokanson-Fasig, B., Hoshina, K., Lankinen, Aapo, Huang, F., Huber, M., Hultqvist, K., Alfaro, R., DuVernois, M. A., Hünnefeld, M., Hussain, R., In, S., Iovine, N., Ishihara, A., Jacobi, Emanuel, Japaridze, G. S., Jeong, M., Jero, K., Jones, B. J. P., Espinoza, C., Kalaczynski, P., Kang, W., Kappes, A., Kappesser, D., Karg, T., Karle, A., Katz, U., Kauer, M., Keivani, A., Kelley, J. L., Fiorino, D. W., Kheirandish, A., Kim, J., Kintscher, T., Kiryluk, J., Kittler, T., Klein, S. R., Koirala, R., Kolanoski, H., Köpke, L., Kopper, C., Fleischhack, H., Kopper, S., Koskinen, D. J., Kowalski, M., Krings, K., Kroll, M., Krückl, G., Kunwar, S., Kurahashi, N., Kyriacou, A., Labare, M., Fraija, N., Lanfranchi, J. L., Larson, M. J., Lauber, F., Leonard, K., Leuermann, M., Liu, Q. R., Lohfink, E., Mariscal, C. J. Lozano, Lu, L., Lünemann, J., Galván-Gámez, A., Luszczak, W., Madsen, J., Maggi, G., Mahn, K. B. M., Makino, Y., Mancina, S., Mariş, I. C., Maruyama, R., Mase, K., Maunu, R., García-González, J. A., Meagher, K., Medici, M., Medina, A., Meier, M., Menne, T., Merino, G., Meures, T., Miarecki, S., Micallef, J., Momenté, G., González, M. M., Montaruli, T., Moore, R. W., Moulai, M., Nagai, R., Nahnhauer, R., Nakarmi, P., Naumann, U., Neer, G., Niederhausen, H., Nowicki, S. C., Goodman, J. A., Nygren, D. R., Pollmann, A. Obertacke, Olivas, A., O'Murchadha, A., O'Sullivan, E., Palczewski, T., Pandya, H., Pankova, D. V., Peiffer, P., Heros, C. Pérez de los, Hampel-Arias, Z., Pieloth, D., Pinat, E., Pizzuto, A., Plum, M., Price, P. B., Przybylski, G. T., Raab, C., Raissi, A., Rameez, M., Rauch, L., Alvarez, C., Harding, J. P., Rawlins, K., Rea, I. C., Reimann, R., Relethford, B., Renzi, G., Resconi, E., Rhode, W., Richman, M., Robertson, S., Rongen, M., Hernandez, S., Rott, C., Ruhe, T., Ryckbosch, D., Rysewyk, D., Safa, I., Herrera, S. E. Sanchez, Sandrock, A., Sandroos, J., Santander, M., Sarkar, S., Hona, B., Satalecka, K., Schaufel, M., Schlunder, P., Schmidt, T., Schneider, A., Schneider, J., Schöneberg, S., Schumacher, L., Sclafani, S., Hueyotl-Zahuantitla, F., Seckel, D., Seunarine, S., Soedingrekso, J., Soldin, D., Song, M., Spiczak, G. M., Spiering, C., Stachurska, J., Stamatikos, M., Stanev, T., Iriarte, A., Stasik, Alexander, Stein, R., Stettner, J., Steuer, A., Stezelberger, T., Stokstad, R. G., Stößl, A., Strotjohann, N. L., Stuttard, T., Sullivan, G. W., Jardin-Blicq, A., Sutherland, M., Taboada, I., Tenholt, F., Ter-Antonyan, S., Terliuk, A., Tilav, S., Tobin, M. N., Tönnis, C., Toscano, S., Tosi, D., Joshi, V., Tselengidou, M., Tung, C. F., Turcati, A., Turcotte, R., Turley, C. F., Ty, B., Unger, E., Elorrieta, M. A. Unland, Usner, Marcel, Vandenbroucke, J., Lara, A., Van Driessche, W., van Eijk, D., van Eijndhoven, N., Vanheule, S., van Santen, J., Vraeghe, M., Walck, C., Wallace, A., Wallraff, M., Wandkowsky, N., Vargas, H. León, Wandler, F. D., Watson, T. B., Weaver, C., Weiss, M. J., Weldert, J., Wendt, C., Werthebach, J., Westerhoff, S., Whelan, B. J., Whitehorn, N., Luis-Raya, G., Wiebe, K., Wiebusch, C. H., Wille, L., Williams, D. R., Wills, L., Wolf, M., Wood, J., Wood, T. R., Woolsey, E., Woschnagg, K., Álvarez, J. D., Malone, K., Wrede, G., Xu, D. L., Xu, X. W., Xu, Y., Yanez, J. P., Yodh, G., Yoshida, S., Yuan, T., IceCube Collaboration, Marinelli, S. S., Martínez-Castro, J., Martinez, O., Matthews, J. A., Miranda-Romagnoli, P., Moreno, E., Mostafá, M., Nellen, L., Newbold, M., Arceo, R., Nisa, M. U., Noriega-Papaqui, R., Pérez-Pérez, E. G., Pretz, J., Ren, Z., Rho, C. D., Rivière, C., Rosa-González, D., Rosenberg, M., Salazar, H., Arteaga-Velázquez, J. C., Greus, F. Salesa, Sandoval, A., Schneider, M., Schoorlemmer, H., Sinnis, G., Smith, A. J., Surajbali, P., Tollefson, K., Torres, I., Rojas, D. Avila, Villaseño, L., Weisgarber, T., Zepeda, A., Zhou, H., Techn. Koordinator:, J. Spengler, Aartsen, M. G., Ackermann, M., Adams, J., Belmont-Moreno, E., Aguilar, J. A., Ahlers, M., Ahrens, M., Altmann, D., Andeen, K., Anderson, T., Ansseau, I., Anton, G., Argüelles, C., Auffenberg, J., BenZvi, S. Y., Axani, S., Backes, P., Bagherpour, H., Bai, X., Barbano, A., Barron, J. P., Barwick, S. W., Baum, V., Bay, R., Beatty, J. J., Physics, and Elementary Particle Physics
- Subjects
010504 meteorology & atmospheric sciences ,TeV [cosmic radiation] ,magnetic field ,Astrophysics ,anisotropy [cosmic radiation] ,01 natural sciences ,cosmic radiation: TeV ,IceCube ,3-DIMENSIONAL FEATURES ,propagation ,Anisotropy ,010303 astronomy & astrophysics ,media_common ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,angular dependence [power spectrum] ,Astrophysics::Instrumentation and Methods for Astrophysics ,ENERGY-SPECTRUM ,Magnetic field ,astroparticle physics ,cosmic rays ,ISM: magnetic fields ,observatory ,power spectrum: angular dependence ,Physique des particules élémentaires ,Astrophysics - High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Cosmic ray ,LARGE-SCALE ANISOTROPY ,Astrophysics::Cosmology and Extragalactic Astrophysics ,energy [particle] ,cosmic radiation: anisotropy ,0103 physical sciences ,ARRIVAL DIRECTIONS ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,INTENSITY ,particle: energy ,magnetic fields [ISM] ,Spectral density ,Astronomy and Astrophysics ,OUTER HELIOSPHERE ,Interstellar medium ,Dipole ,Physics and Astronomy ,Space and Planetary Science ,Sky ,ROTATION ,ddc:520 ,HAWC ,Energy (signal processing) ,dipole - Abstract
We present the first full-sky analysis of the cosmic ray arrival direction distribution with data collected by the High-Altitude Water Cherenkov and IceCube observatories in the northern and southern hemispheres at the same median primary particle energy of 10 TeV. The combined sky map and angular power spectrum largely eliminate biases that result from partial sky coverage and present a key to probe into the propagation properties of TeV cosmic rays through our local interstellar medium and the interaction between the interstellar and heliospheric magnetic fields. From the map, we determine the horizontal dipole components of the anisotropy δ 0h = 9.16 ×10 -4 and δ 6h = 7.25 ×10 -4 (±0.04 × 10 -4 ). In addition, we infer the direction (229.°2 ± 3.°5 R.A. 11.°4 ± 3.°0 decl.) of the interstellar magnetic field from the boundary between large-scale excess and deficit regions from which we estimate the missing corresponding vertical dipole component of the large-scale anisotropy to be δN ∼ -3.97 +1.0 -2.0 × 10 -4 ., 0, SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2019
- Full Text
- View/download PDF
13. Constraints on the Emission of Gamma-Rays from M31 with HAWC
- Author
-
HAWC Collaboration, Albert, A., Alfaro, R., Alvarez, C., Arteaga-Vel��zquez, J. C., Arunbabu, K. P., Rojas, D. Avila, Solares, H. A. Ayala, Belmont-Moreno, E., BenZvi, S. Y., Brisbois, C., Caballero-Mora, K. S., Capistr��n, T., Carrami��ana, A., Casanova, S., Cotti, U., Cotzomi, J., de Le��n, S. Couti��o, De la Fuente, E., de Le��n, C., Dichiara, S., Dingus, B. L., DuVernois, M. A., Engel, K., Espinoza, C., Fleischhack, H., Fraija, N., Galv��n-G��mez, A., Garc��a-Aguilar, D., Garc��a-Gonz��lez, J. A., Garfias, F., Gonz��lez, M. M., Goodman, J. A., Harding, J. P., Hernandez, S., Hona, B., Huang, D., Hueyotl-Zahuantitla, F., H��ntemeyer, P., Iriarte, A., Jardin-Blicq, A., Joshi, V., Kieda, D., Lee, W. H., Vargas, H. Le��n, Longinotti, A. L., Luis-Raya, G., Malone, K., Marinelli, S. S., Martinez, O., Martinez-Castellanos, I., Mart��nez-Castro, J., Matthews, J. A., Miranda-Romagnoli, P., Morales-Soto, J. A., Moreno, E., Mostaf��, M., Nayerhoda, A., Nellen, L., Newbold, M., Noriega-Papaqui, R., Peisker, A., P��rez-P��rez, E. G., Ren, Z., Rho, C. D., Rosa-Gonz��lez, D., Rosenberg, M., Rubenzahl, R., Salazar, H., Greus, F. Salesa, Sandoval, A., Schneider, M., Sinnis, G., Smith, A. J., Springer, R. W., Surajbali, P., Tabachnick, E., Tibolla, O., Tollefson, K., Torres, I., Villase��or, L., Wood, J., Yapici, T., Zepeda, A., and Zhou, H.
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,010504 meteorology & atmospheric sciences ,Andromeda Galaxy ,Astrophysics::High Energy Astrophysical Phenomena ,Milky Way ,Gamma ray ,FOS: Physical sciences ,Astronomy and Astrophysics ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Galactic plane ,01 natural sciences ,Galaxy ,Interstellar medium ,Space and Planetary Science ,0103 physical sciences ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Fermi Gamma-ray Space Telescope - Abstract
Cosmic rays, along with stellar radiation and magnetic fields, are known to make up a significant fraction of the energy density of galaxies such as the Milky Way. When cosmic rays interact in the interstellar medium, they produce gamma-ray emission which provides an important indication of how the cosmic rays propagate. Gamma rays from the Andromeda Galaxy (M31), located 785 kpc away, provide a unique opportunity to study cosmic-ray acceleration and diffusion in a galaxy with a structure and evolution very similar to the Milky Way. Using 33 months of data from the High Altitude Water Cherenkov Observatory, we search for TeV gamma rays from the galactic plane of M31. We also investigate past and present evidence of galactic activity in M31 by searching for Fermi Bubble-like structures above and below the galactic nucleus. No significant gamma-ray emission is observed, so we use the null result to compute upper limits on the energy density of cosmic rays $>10$ TeV in M31. The computed upper limits are approximately ten times higher than expected from the extrapolation of the Fermi LAT results., Accepted for publication in ApJ
- Published
- 2020
- Full Text
- View/download PDF
14. Multi-messenger Observations of a Binary Neutron Star Merger
- Author
-
LIGO Scientific Collaboration and Virgo Collaboration, Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, IPN Collaboration, The Insight-HXMT Collaboration, ANTARES Collaboration, The Swift Collaboration, AGILE Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Pathfinder, Las Cumbres Observatory Group, OzGrav, DWF (Deeper, Wider, Faster Program), AST3, and CAASTRO Collaborations, The VINROUGE Collaboration, MASTER Collaboration, J-GEM, GROWTH, JAGWAR, Caltech-NRAO, TTU-NRAO, and NuSTAR Collaborations, Pan-STARRS, The MAXI Team, TZAC Consortium, KU Collaboration, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS: Transient Robotic Observatory of the South Collaboration, The BOOTES Collaboration, MWA: Murchison Widefield Array, The CALET Collaboration, IKI-GW Follow-up Collaboration, H.E.S.S. Collaboration, LOFAR Collaboration, LWA: Long Wavelength Array, HAWC Collaboration, The Pierre Auger Collaboration, ALMA Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, ATLAS, High Time Resolution Universe Survey, RIMAS and RATIR, and SKA South Africa/MeerKAT
- Subjects
stars: neutron ,gravitational waves - Abstract
著者: 所属. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS): 海老沢, 研; 磯部, 直樹; 下向, 怜歩; 菅原, 泰晴; 冨田, 洋; 上野, 史郎; 桂川, 美穂; 中島, 真也; 小高, 裕和; 高橋, 忠幸, Author(s): Affiliation. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA)(ISAS): Ebisawa, Ken; Isobe, Naoki; Shimomukai, Reiho; Sugawara, Yasuharu; Tomida,Hiroshi;Ueno, Shiro; Katsuragawa, Miho; Nakashima, Shinya; Odaka, Hirokazu; Takahashi, Tadayuki, Accepted: 2017-10-06, 資料番号: SA1170283000
- Published
- 2017
15. HAWC Contributions to the 34th International Cosmic Ray Conference (ICRC2015)
- Author
-
HAWC Collaboration, Abeysekara, A. U., Alfaro, R., Alvarez, C., ��lvarez, J. D., Arceo, R., Arteaga-Vel��zquez, J. C., Solares, H. A. Ayala, Barber, A. S., Baughman, B. M., Bautista-Elivar, N., Gonzalez, J. Becerra, Becerril, A., Belmont, E., BenZvi, S. Y., Berley, D., Bernal, A., Braun, J., Caballero-Mora, K. S., Capistr��n, T., Carrami��ana, A., Castillo, M., Cotti, U., Cotzomi, J., de Le��n, S. Couti��o, de la Fuente, E., De Le��n, C., DeYoung, T., Hernandez, R. Diaz, Diaz-Cruz, L., D��az-V��lez, J. C., Dingus, B. L., DuVernois, M. A., Ellsworth, R. W., Engel, K., Enriquez-Rivera, O., Fick, B., Fiorino, D. W., Flores, J. L., Fraija, N., Garcia-Torales, G., Garfias, F., Gonz��lez, M. M., Goodman, J. A., Gussert, M., Hampel-Arias, Z., Hansen, P., Harding, J. Patrick, Hernandez, S., Hui, C. M., H��ntemeyer, P., Imran, A., Iriarte, A., Karn, P., Kieda, D., Kunde, G. J., Lara, A., Lauer, R. J., Lee, W. H., Lennarz, D., Vargas, H. Le��n, Linnemann, J. T., Proper, M. Longo, Raya, G. Luis, Luna-Garc��a, R., Malone, K., Marinelli, A., Marinelli, S. S., Martinez, H., Martinez, O., Mart��nez-Castro, J., Matthews, J. A. J., McEnery, J., Miranda-Romagnoli, P., Moreno, E., Mostaf��, M., Nellen, L., Newbold, M., Nisa, M. Un, Noriega-Papaqui, R., Oceguera-Becerra, T., Patricelli, B., Pelayo, R., P��rez-P��rez, E. G., Pretz, J., Ren, Z., Rho, C. D., Rivi��re, C., Rosa-Gonz��lez, D., Ryan, J., Salazar, H., Greus, F. Salesa, Sandoval, A., Schneider, M., Sinnis, G., Smith, A. J., Smith, A. W., Woodle, K. Sparks, Springer, R. W., Taboada, I., Tibolla, O., Toale, P. A., Tollefson, K., Torres, I., Ukwatta, T. N., Villase��or, L., Weisgarber, T., Westerhoff, S., Wisher, I. G., Wood, J., Yapici, T., Yodh, G. B., Younk, P. W., Zepeda, A., and Zhou, H.
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,astro-ph.HE ,High Energy Physics - Experiment (hep-ex) ,hep-ex ,FOS: Physical sciences ,Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Experiment - Abstract
List of proceedings from the HAWC Collaboration presented at the 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The Netherlands., List of proceedings from the HAWC Collaboration presented at ICRC2015. Follow the "HTML" link to access the list
- Published
- 2017
16. Search for Very High Energy Gamma Rays from the Northern Fermi Bubble Region with HAWC
- Author
-
HAWC Collaboration, Abeysekara, A., Albert, A., Alfaro, R., Alvarez, C., Álvarez, J., Arceo, R., Arteaga-Velázquez, J., Solares, H., Barber, A., Bautista-Elivar, N., Becerril, A., Belmont-Moreno, E., BenZvi, S., Berley, D., Braun, J., Brisbois, C., Caballero-Mora, K., Capistrán, T., Carramiñana, A., Casanova, S., Castillo, M., Cotti, U., Cotzomi, J., de León, S., De León, C., De la Fuente, E., Hernandez, R., Dingus, B., DuVernois, M., Díaz-Vélez, J., Ellsworth, R., Engel, K., Fick, B., Fiorino, D., Fleischhack, H., Fraija, N., García-González, J., Garfias, F., Gerhardt, M., Muñoz, A., González, M., Goodman, J., Hampel-Arias, Z., Harding, J., Hernandez, S., Hernandez-Almada, A., Hinton, J., Hona, B., Hui, C., Hüntemeyer, P., Iriarte, A., Jardin-Blicq, A., Joshi, V., Kaufmann, S., Kieda, D., Lara, A., Lauer, R., Lee, W., Lennarz, D., Vargas, H., Linnemann, J., Longinotti, A., Raya, G., Luna-García, R., López-Coto, R., Malone, K., Marinelli, S., Martinez, O., Martinez-Castellanos, I., Martínez-Castro, J., Martínez-Huerta, H., Matthews, J., Miranda-Romagnoli, P., Moreno, E., Mostafá, M., Nellen, L., Newbold, M., Nisa, M., Noriega-Papaqui, R., Pelayo, R., Pretz, J., Pérez-Pérez, E., Ren, Z., Rho, C., Rivière, C., Rosa-González, D., Rosenberg, M., Ruiz Velasco, E., Salazar, H., Greus, F., Sandoval, A., Schneider, M., Schoorlemmer, H., Sinnis, G., Smith, A., Springer, R., Surajbali, P., Taboada, I., Tibolla, O., Tollefson, K., Torres, I., Ukwatta, T., Vianello, G., Weisgarber, T., Westerhoff, S., Wisher, I., Wood, J., Yapici, T., Yodh, G., Zepeda, A., and Zhou, H.
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,HAWC - Abteilung Hinton ,Particle physics ,High energy ,Proton ,010308 nuclear & particles physics ,Bubble ,Computer Science::Information Retrieval ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Gamma ray ,FOS: Physical sciences ,Astronomy and Astrophysics ,Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) ,01 natural sciences ,Space and Planetary Science ,0103 physical sciences ,High Energy Physics::Experiment ,Neutrino ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,Cherenkov radiation ,Fermi Gamma-ray Space Telescope - Abstract
We present a search of very high energy gamma-ray emission from the Northern $\textit{Fermi}$ Bubble region using data collected with the High Altitude Water Cherenkov (HAWC) gamma-ray observatory. The size of the data set is 290 days. No significant excess is observed in the Northern $\textit{Fermi}$ Bubble region, hence upper limits above $1\,\text{TeV}$ are calculated. The upper limits are between $3\times 10^{-7}\,\text{GeV}\, \text{cm}^{-2}\, \text{s}^{-1}\,\text{sr}^{-1}$ and $4\times 10^{-8}\,\text{GeV}\,\text{cm}^{-2}\,\text{s}^{-1}\,\text{sr}^{-1}$. The upper limits disfavor a proton injection spectrum that extends beyond $100\,\text{TeV}$ without being suppressed. They also disfavor a hadronic injection spectrum derived from neutrino measurements.
- Published
- 2017
17. The HAWC Gamma-Ray Observatory: Sensitivity to Steady and Transient Sources of Gamma Rays
- Author
-
HAWC Collaboration, Abeysekara, A. U., Alfaro, R., Alvarez, C., Álvarez, J. D., Arceo, R., Arteaga-Velázquez, J. C., Solares, H. A. Ayala, Barber, A. S., Baughman, B. M., Bautista-Elivar, N., Belmont, E., BenZvi, S. Y., Berley, D., Rosales, M. Bonilla, Braun, J., Caballero-Lopez, R. A., Caballero-Mora, K. S., Carramiñana, A., Castillo, M., Cotti, U., Cotzomi, J., de la Fuente, E., De León, C., DeYoung, T., Hernandez, R. Diaz, Díaz-Vélez, J. C., Dingus, B. L., DuVernois, M. A., Ellsworth, R. W., Fernandez, A., Fiorino, D. W., Fraija, N., Galindo, A., Garfias, F., González, L. X., González, M. M., Goodman, J. A., Grabski, V., Gussert, M., Hampel-Arias, Z., Hui, C. M., Hüntemeyer, P., Imran, A., Iriarte, A., Karn, P., Kieda, D., Kunde, G. J., Lara, A., Lauer, R. J., Lee, W. H., Lennarz, D., Vargas, H. León, Linares, E. C., Linnemann, J. T., Longo, M., Luna-GarcIa, R., Marinelli, A., Martinez, H., Martinez, O., Martínez-Castro, J., Matthews, J. A. J., Miranda-Romagnoli, P., Moreno, E., Mostafá, M., Nava, J., Nellen, L., Newbold, M., Noriega-Papaqui, R., Oceguera-Becerra, T., Patricelli, B., Pelayo, R., Pérez-Pérez, E. G., Pretz, J., Rivière, C., Rosa-González, D., Salazar, H., Salesa, F., Sanchez, F. E., Sandoval, A., Santos, E., Schneider, M., Silich, S., Sinnis, G., Smith, A. J., Sparks, K., Springer, R. W., Taboada, I., Toale, P. A., Tollefson, K., Torres, I., Ukwatta, T. N., Villaseñor, L., Weisgarber, T., Westerhoff, S., Wisher, I. G., Wood, J., Yodh, G. B., Younk, P. W., Zaborov, D., Zepeda, A., and Zhou, H.
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,astro-ph.HE ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics::Galaxy Astrophysics - Abstract
The High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory is designed to record air showers produced by cosmic rays and gamma rays between 100 GeV and 100 TeV. Because of its large field of view and high livetime, HAWC is well-suited to measure gamma rays from extended sources, diffuse emission, and transient sources. We describe the sensitivity of HAWC to emission from the extended Cygnus region as well as other types of galactic diffuse emission; searches for flares from gamma-ray bursts and active galactic nuclei; and the first measurement of the Crab Nebula with HAWC-30., Comment: Contributions to the 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, July 2013
- Published
- 2017
18. Multi-messenger observations of a binary neutron star merger
- Author
-
LIGO Scientific Collaboration and Virgo Collaboration, Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, IPN Collaboration, The Insight-HXMT Collaboration, ANTARES Collaboration, The Swift Collaboration, AGILE Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Path finder, Las Cumbres Observatory Group, OzGrav, DWF (Deeper, Wider, Faster Program), AST3, CAASTRO Collaborations, The VINROUGE Collaboration, MASTER Collaboration, J-GEM, GROWTH, JAGWAR, Caltech- NRAO, TTU-NRAO, NuSTAR Collaborations, Pan-STARR, The MAXI Team, TZAC Consortium, KU Collaboration, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS: Transient Robotic Observatory of the South Collaboration, The BOOTES Collaboration, MWA: Murchison Wide field Array, The CALET Collaboration, IKI-GW Follow-up Collaboration, H.E.S.S. Collaboration, LOFAR Collaboration, LWA: Long Wavelength Array, HAWC Collaboration, The Pierre Auger Collaboration, ALMA Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, ATLAS, High Time Resolution Universe Survey, RIMAS and RATIR, and SKA South Africa / MeerKAT
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim 1.7\,{\rm{s}}$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of ${40}_{-8}^{+8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $\,{M}_{\odot }$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim 40\,{\rm{Mpc}}$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim 9$ and $\sim 16$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
- Published
- 2017
19. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A
- Author
-
Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., Al Samarai, I., Altmann, D., Andeen, K., Anderson, T., Ansseau, I., Anton, G., Argüelles, C., Auffenberg, J., Axani, S., Bagherpour, H., Bai, X., Barron, J. P., Barwick, S. W. Baum V., Bay, R., Beatty, J. J., Becker Tjus, J., Becker, K. -H., Benzvi, S., Berley, D., Bernardini, E., Besson, D. Z., Binder, G., Bindig, D., Blaufuss, E., Blot, S., Bohm, C., Börner, M., Bos, F., Böser, S., Botner, O., Bourbeau, E., Bourbeau, J., Bradascio, F., Braun, J., Brenzke, M., Bretz, H. -P., Bron, S., Brostean-Kaiser, J., Burgman, A., Busse, R. S., Carver, T., Cheung, E., Chirkin, D., Christov, A., Clark, K., Classen, L., Coenders, S., Collin, G. H., Conrad, J. M., Coppin, P., Correa, P., Cowen, D. F., Cross, R., Dave, P., Day, M., de André, J. P. A. M., De Clercq, C., Delaunay, J. J., Dembinski, H., De Ridder, S., Desiati, P., de Vries, K. D., de Wasseige, G., de With, M., Deyoung, T., Díaz-Vélez, J. C., di Lorenzo, V., Dujmovic, H., Dumm, J. P., Dunkman, M., Dvorak, E., Eberhardt, B., Ehrhardt, T., Eichmann, B., Eller, P., Evenson, P. A., Fahey, S., Fazely, A. R., Felde, J., Filimonov, K., Finley, C., Flis, S., Franckowiak, A., Friedman, E., Fritz, A., Gaisser, T. K., Gallagher, J., Gerhardt, L., Ghorbani, K., Glauch, T., Glüsenkamp, T., Goldschmidt, A., Gonzalez, J. G., Grant, D., Griffith, Z., Haack, C., Hallgren, A., Halzen, F., Hanson, K., Hebecker, D., Heereman, D., Helbing, K., Hellauer, R., Hickford, S., Hignight, J., Hill, G. C., Hoffman, K. D., Hoffmann, R., Hoinka, T., Hokanson-Fasig, B., Hoshina, K., Huang, F., Huber, M., Hultqvist, K., Hünnefeld, M., Hussain, R., In, S., Iovine, N., Ishihara, A., Jacobi, E., Japaridze, G. S., Jeong, M., Jero, K., Jones, B. J. P., Kalaczynski, P., Kang, W., Kappes, A., Kappesser, D., Karg, T., Karle, A., Katz, U., Kauer, M., Keivani, A., Kelley, J. L., Kheirandish, A., Kim, J., Kim, M., Kintscher, T., Kiryluk, J., Kittler, T., Klein, S. R., Koirala, R., Kolanoski, H., Köpke, L., Kopper, C., Kopper, S., Koschinsky, J. P., Koskinen, D. J., Kowalski, M., Krings, K., Kroll, M., Krückl, G., Kunwar, S., Kurahashi, N., Kuwabara, T., Kyriacou, A., Labare, M., Lanfranchi, J. L., Larson, M. J., Lauber, F., Leonard, K., Lesiak-Bzdak, M., Leuermann, M., Liu, Q. R., Lozano Mariscal, C. J., Lu, L., Lünemann, J., Luszczak, W., Madsen, J., Maggi, G., Mahn, K. B. M., Mancina, S., Maruyama, R., Mase, K., Maunu, R., Meagher, K., Medici, M., Meier, M., Menne, T., Merino, G., Meures, T., Miarecki, S., Micallef, J., Momenté, G., Montaruli, T., Moore, R. W., S, Morse, R., Moulai, M., Nahnhauer, R., Nakarmi, P., Naumann, U., Neer, G., Niederhausen, H., Nowicki, S. C., Nygren, D. R., Obertacke Pollmann, A., Olivas, A., O'Murchadha, A., O'Sullivan, E., Palczewski, T., Pandya, H., Pankova, D. V., Peiffer, P., Pepper, J. A., Pérez de los Heros, C., Pieloth, D., Pinat, E., Plum, M., Price, P. B., Przybylski, G. T., Raab, C., Rädel, L., Rameez, M., Rauch, L., Rawlins, K., Rea, I. C., Reimann, R., Relethford, B., Relich, M., Resconi, E., Rhode, W., Richman, M., Robertson, S., Rongen, M., Rott, C., Ruhe, T., Ryckbosch, D., Rysewyk, D., Safa, I., Sälzer, T., Sanchez Herrera, S. E., Sandrock, A., Sandroos, J., Santander, M., Sarkar, S., Satalecka, K., Schlunder, P., Schmidt, T., Schneider, A., Schoenen, S., Schöneberg, S., Schumacher, L., Sclafani, S., Seckel, D., Seunarine, S., Soedingrekso, J., Soldin, D., Song, M., Spiczak, G. M., Spiering, C., Stachurska, J., Stamatikos, M., Stanev, T., Stasik, A., Stein, R., Stettner, J., Steuer, A., Stezelberger, T., Stokstad, R. G., Stößl, A., Strotjohann, N. L., Stuttard, T., Sullivan, G. W., Sutherland, M., Taboada, I., Tatar, J., Tenholt, F., Ter-Antonyan, S., Terliuk, A., Tilav, S., Toale, P. A., Tobin, M. N., Toennis, C., Toscano, S., Tosi, D., Tselengidou, M., Tung, C. F., Turcati, A., Turley, C. F., Ty, B., Unger, E., Usner, M., Vandenbroucke, J., Van Driessche, W., van Eijk, D., van Eijndhoven, N., Vanheule, S., van Santen, J., Vogel, E., Vraeghe, M., Walck, C., Wallace, A., Wallraff, M., Wandler, F. D., Wandkowsky, N., Waza, A., Weaver, C., Weiss, M. J., Wendt, C., Werthebach, J., Westerhoff, S., Whelan, B. J., Whitehorn, N., Wiebe, K., Wiebusch, C. H., Wille, L., Williams, D. R., Wills, L., Wolf, M., Wood, J., Wood, T. R., Woschnagg, K., D. L., Xu, X. W., Xu, Xu, Y., Yanez, J. P., Yodh, G., Yoshida, S., Yuan, T., Fermi-LAT, Collaboration, Abdollahi, S., Ajello, M., Angioni, R., Baldini, L., Ballet, J., Barbiellini, G., Bastieri, D., Bechtol, K., Bellazzini, R., Berenji, B., Bissaldi, E., Blandford, R. D., Bonino, R., Bottacini, E., Bregeon, J., Bruel, P., Buehler, R., Burnett, T. H., Burns, E., Buson, S., Cameron, R. A., Caputo, R., Caraveo, P. A., Cavazzuti, E., Charles, E., Chen, S., Cheung, C. C., Chiang, J., Chiaro, G., Ciprini, S., Cohen-Tanugi, J., Conrad, J., Costantin, D., Cutini, S., D'Ammando, F., de Palma, F., Digel, S. W., Di Lalla, N., Di Mauro, M., Di Venere, L., Domínguez, A., Favuzzi, C., Fukazawa, Y., Funk, S., Fusco, P., Gargano, F., Gasparrini, D., Giglietto, N., Giomi, M., Giommi, P., Giordano, F., Giroletti, M., Glanzman, T., Green, D., Grenier, I. A., Grondin, M. -H., Guiriec, S., Harding, A. K., Hayashida, M., Hays, E., Hewitt, J. W., Horan, D., Jóhannesson, G., Kadler, M., Kensei, S., Kocevski, D., Krauss, F., Kreter, M., Kuss, M., La Mura, G., Larsson, S., Latronico, L., Lemoine-Goumard, M., Li, J., Longo, F., Loparco, F., Lovellette, M. N., Lubrano, P., Magill, J. D., Maldera, S., Malyshev, D., Manfreda, A., Mazziotta, M. N., Mcenery, J. E., Meyer, M., Michelson, P. F., Mizuno, T., Monzani, M. E., Morselli, A., Moskalenko, I. V., Negro, M., Nuss, E., Ojha, R., Omodei, N., Orienti, M., Orlando, E., Palatiello, M., Paliya, V. S., Perkins, J. S., Persic, M., Pesce-Rollins, M., Piron, F., Porter, T. A., Principe, G., Rainò, S., Rando, R., Rani, B., Razzano, M., Razzaque, S., Reimer, A., Reimer, O., Renault-Tinacci, N., Ritz, S., Rochester, L. S., Saz Parkinson, P. M., Sgrò, C., Siskind, E. J., Spandre, G., Spinelli, P., Suson, D. J., Tajima, H., Takahashi, M., Tanaka, Y., Thayer, J. B., Thompson, D. J., Tibaldo, L., Torres, D. F., Torresi, E., Tosti, G., Troja, E., Valverde, J., Vianello, G., Vogel, M., Wood, K., Wood, M., Zaharijas, G., Magic, Collaboration, Ahnen, M. L., Ansoldi, S., Antonelli, L. A., Arcaro, C., Baack, D., Babić, A., Banerjee, B., Bangale, P., Barres de Almeida, U., Barrio, J. A., Becerra González, J., Bednarek, W., Berti, A., Bhattacharyya, W., Biland, A., Blanch, O., Bonnoli, G., Carosi, A., Carosi, R., Ceribella, G., Chatterjee, A., Colak, S. M., Colin, P., Colombo, E., Contreras, J. L., Cortina, J., Covino, S., Cumani, P., Da Vela, P., Dazzi, F., De Angelis, A., De Lotto, B., Delfino, M., Delgado, J., Di Pierro, F., Dominis Prester, D., Dorner, D., Doro, M., Einecke, S., Elsaesser, D., Fallah Ramazani, V., Fernández-Barral, A., Fidalgo, D., Foffano, L., Pfrang, K., Fonseca, M. V., Font, L., Franceschini, A., Fruck, C., Galindo, D., Gallozzi, S., García López, R. J., Garczarczyk, M., Gaug, M., Giammaria, P., Godinović, N., Gora, D., Guberman, D., Hadasch, D., Hahn, A., Hassan, T., Herrera, J., Hose, J., Hrupec, D., Inoue, S., Ishio, K., Konno, Y., Kubo, H., Kushida, J., Lelas, D., Lindfors, E., Lombardi, S., López, M., Maggio, C., Majumdar, P., Makariev, M., Maneva, G., Manganaro, M., Mannheim, K., Maraschi, L., Mariotti, M., Martínez, M., Masuda, S., Mazin, D., Minev, M., J. M., M, Mirzoyan, R., Moralejo, A., Moreno, V., Moretti, E., Nagayoshi, T., Neustroev, V., Niedzwiecki, A., Nievas Rosillo, M., Nigro, C., Nilsson, K., Ninci, D., Nishijima, K., Noda, K., Nogués, L., Paiano, S., Palacio, J., Paneque, D., Paoletti, R., Paredes, J. M., Pedaletti, G., Peresano, M., Prada Moroni, P. G., Prandini, E., Puljak, I., Rodriguez Garcia, J., Reichardt, I., Ribó, M., Rico, J., Righi, C., Rugliancich, A., Saito, T., Schweizer, T., Sitarek, J., Šnidaric ́, I., Sobczynska, D., Stamerra, A., Strzys, M., Surić, T., Tavecchio, F., Temnikov, P., Terzić, T., Teshima, M., Torres-Albà, N., Treves, A., Tsujimoto, S., Vanzo, G., Vazquez Acosta, M., Vovk, I., Ward, J. E., Will, M., Zaric ́, D., Agile, Team, Lucarelli, F., Tavani, M., Piano, G., Donnarumma, I., Pittori, C., Verrecchia, F., Bulgarelli, A., Caraveo, P., Cattaneo, P. W., Colafrancesco, S., Costa, E., Di Cocco, G., Ferrari, A., Gianotti, F., Giuliani, A., Lipari, P., Mereghetti, S., Pacciani, L., Paoletti, F., Parmiggiani, N., Pellizzoni, A., Picozza, P., Pilia, M., Rappoldi, A., Trois, A., Vercellone, S., Vittorini, V., ASAS-SN, Team, Stanek, A. Franckowiak K. Z., Kochanek, C. S., Beacom, J. F., Thompson, T. A., Holoien, T. W. -S., Dong, S., Prieto, J. L., Shappee, B. J., Holmbo, S., Hawc, Collaboration, Abeysekara, A. U., Albert, A., Alfaro, R., Alvarez, C., Arceo, R., Arteaga-Velázquez, J. C., Avila Rojas, D., Ayala Solares, H. A., Becerril, A., Belmont-Moreno, E., Bernal, A., Caballero-Mora, K. S., Capistrán, T., Carramiñana, A., Casanova, S., Castillo, M., Cotti, U., Cotzomi, J., Coutiño de León, S., De León, C., De la Fuente, E., Diaz Hernandez, R., Dichiara, S., Dingus, B. L., Duvernois, M. A., Ellsworth, R. W., Engel, K., Fiorino, D. W., Fleischhack, H., Fraija, N., García-González, J. A., Garfias, F., González Muñoz, A., González, M. M., Goodman, J. A., Hampel-Arias, Z., Harding, J. P., Hernandez, S., Hona, B., Hueyotl-Zahuantitla, F., Hui, C. M., Hüntemeyer, P., Iriarte, A., Jardin-Blicq, A., Joshi, V., Kaufmann, S., Kunde, G. J., Lara, A., Lauer, R. J., Lee, W. H., Lennarz, D., León Vargas, H., Linnemann, J. T., Longinotti, A. L., Luis-Raya, G., Luna-García, R., Malone, K., Marinelli, S. S., Martinez, O., Martinez-Castellanos, I., Martínez-Castro, J., Martínez-Huerta, H., Matthews, J. A., Miranda-Romagnoli, P., Moreno, E., Mostafá, M., Nayerhoda, A., Nellen, L., Newbold, M., Nisa, M. U., Noriega-Papaqui, R., Pelayo, R., Pretz, J., Pérez-Pérez, E. G., Ren, Z., Rho, C. D., Rivière, C., Rosa-González, D., Rosenberg, M., Ruiz-Velasco, E., Salesa Greus, F., Sandoval, A., Schneider, M., Schoorlemmer, H., Sinnis, G., Smith, A. J., Springer, R. W., Surajbali, P., Tibolla, O., Tollefson, K., Torres, I., Villaseñor, L., Weisgarber, T., Werner, F., Yapici, T., Gaurang, Y., Zepeda, A., Zhou, H., Álvarez, J. D., Collaboration, H. E. S. S., Abdalla, H., Angüner, E. O., Armand, C., Backes, M., Becherini, Y., Berge, D., Böttcher, M., Boisson, C., Bolmont, J., Bonnefoy, S., Bordas, P., Brun, F., Büchele, M., Bulik, T., Caroff, S., Cerruti, M., Chakraborty, N., Chandra, S., Chen, A., Davids, I. D., Deil, C., Devin, J., Djannati-Ataï, A., Egberts, K., Emery, G., Eschbach, S., Fiasson, A., Fontaine, G., Füßling, M., Gallant, Y. A., Gaté, F., Giavitto, G., Glawion, D., Glicenstein, J. F., Gottschall, D., Haupt, M., Henri, G., Hinton, J. A., Hoischen, C., Holch, T. L., Huber, D., Jamrozy, M., Jankowsky, D., Jankowsky, F., Jouvin, L., Jung-Richardt, I., Kerszberg, D., Khélifi, B., King, J., Klepser, S., Kluz ́niak, W., Komin, Nu., Kraus, M., Lefaucheur, J., Lemière, A., Lenain, J. -P., Leser, E., Lohse, T., López-Coto, R., Lorentz, M., Lypova, I., Marandon, V., Guillem Martí-Devesa, G., Maurin, G., Mitchell, A. M. W., Moderski, R., Mohamed, M., Mohrmann, L., Moulin, E., Murach, T., de Naurois, M., Niederwanger, F., Niemiec, J., Oakes, L., O'Brien, P., Ohm, S., Ostrowski, M., Oya, I., Panter, M., Parsons, R. D., Perennes, C., Piel, Q., Pita, S., Poireau, V., Priyana Noel, A., Prokoph, H., Pühlhofer, G., Quirrenbach, A., Raab, S., Rauth, R., Renaud, M., Rieger, F., Rinchiuso, L., Romoli, C., Rowell, G., Rudak, B., Sasaki, D. A., Sanchez, M., Schlickeiser, R., Schüssler, F., Schulz, A., Schwanke, U., Seglar-Arroyo, M., Shafi, N., Simoni, R., Sol, H., Stegmann, C., Steppa, C., Tavernier, T., Taylor, A. M., Tiziani, D., Trichard, C., Tsirou, M., van Eldik, C., van Rensburg, C., van Soelen, B., Veh, J., Vincent, P., Voisin, F., Wagner, S. J., Wagner, R. M., Wierzcholska, A., Zanin, R., Zdziarski, A. A., Zech, A., Ziegler, A., Zorn, J., Żywucka, N., Integral, Team, Savchenko, V., Ferrigno, C., Bazzano, A., Diehl, R., Kuulkers, E., Laurent, P., Natalucci, L., Panessa, F., Rodi, J., Ubertini, P., Kanata Kiso and Subaru Observing Teams, Morokuma, T., Ohta, K., Tanaka, Y. T., Mori, H., Yamanaka, M., Kawabata, K. S., Utsumi, Y., Nakaoka, T., Kawabata, M., Nagashima, H., Yoshida, M., Matsuoka, Y., Itoh, R., Kapteyn, Team, Keel, W., Liverpool Telescope Team, Copperwheat, C., Steele, I., Swift/nustar, Team, Cenko, S. B., Evans, P. A., Fox, D. B., Kennea, J. A., Marshall, F. E., Osborne, J. P., Tohuvavohu, A., Veritas, Collaboration, Archer, A., Benbow, W., Bird, R., Brill, A., Brose, R., Buchovecky, M., Buckley, J. H., Bugaev, V., Christiansen, J. L., Connolly, M. P., Cui, W., Daniel, M. K., Errando, M., Falcone, A., Feng, Q., Finley, J. P., Fortson, L., Furniss, A., Gueta, O., Hütten, M., Hervet, O., Hughes, G., Humensky, T. B., Johnson, C. A., Kaaret, P., Kar, P., Kelley-Hoskins, N., Kertzman, M., Kieda, D., Krause, M., Krennrich, F., Kumar, S., Lang, M. J., Lin, T. T. Y., Maier, G., Mcarthur, S., Moriarty, P., Mukherjee, R., Nieto, D., O'Brien, S., Ong, R. A., Otte, A. N., Park, N., Petrashyk, A., Pohl, M., Popkow, A., Pueschel, S. E., Quinn, J., Ragan, K., Reynolds, P. T., Richards, G. T., Roache, E., Rulten, C., Sadeh, I., Scott, S. S., Sembroski, G. H., Shahinyan, K., Sushch, I., Trépanier, S., Tyler, J., Vassiliev, V. V., Wakely, S. P., Weinstein, A., Wells, R. M., Wilcox, P., Wilhelm, A., Williams, D. A., Zitzer, B., Vla/b, Team, Tetarenko, A. J., Kimball, A. E., Miller-Jones, J. C. A., Sivakoff, G. R., Massachusetts Institute of Technology. Laboratory for Nuclear Science, Massachusetts Institute of Technology. Department of Nuclear Science and Engineering, Massachusetts Institute of Technology. Department of Physics, ITA, High Energy Astrophys. & Astropart. Phys (API, FNWI), Faculty of Science, API Other Research (FNWI), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Particules de Montpellier (LUPM), Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Département d'Astrophysique (ex SAP) (DAP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, IceCube, Fermi-LAT, Kapteyn, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS, VLA/17B-403, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., Al Samarai, I., Altmann, D., Andeen, K., Anderson, T., Ansseau, I., Anton, G., Argüelles, C., Auffenberg, J., Axani, S., Bagherpour, H., Bai, X., Barron, J. P., Barwick, S. W., Baum, V., Bay, R., Beatty, J. J., Becker Tjus, J., Becker, K. -H., Benzvi, S., Berley, D., Bernardini, E., Besson, D. Z., Binder, G., Bindig, D., Blaufuss, E., Blot, S., Bohm, C., Börner, M., Bos, F., Böser, S., Botner, O., Bourbeau, E., Bourbeau, J., Bradascio, F., Braun, J., Brenzke, M., Bretz, H. -P., Bron, S., Brostean-Kaiser, J., Burgman, A., Busse, R. S., Carver, T., Cheung, E., Chirkin, D., Christov, A., Clark, K., Classen, L., Coenders, S., Collin, G. H., Conrad, J. M., Coppin, P., Correa, P., Cowen, D. F., Cross, R., Dave, P., Day, M., de André, J. P. A. M., De Clercq, C., Delaunay, J. J., Dembinski, H., De Ridder, S., Desiati, P., de Vries, K. D., de Wasseige, G., de With, M., Deyoung, T., Díaz-Vélez, J. C., Di Lorenzo, V., Dujmovic, H., Dumm, J. P., Dunkman, M., Dvorak, E., Eberhardt, B., Ehrhardt, T., Eichmann, B., Eller, P., Evenson, P. A., Fahey, S., Fazely, A. R., Felde, J., Filimonov, K., Finley, C., Flis, S., Franckowiak, A., Friedman, E., Fritz, A., Gaisser, T. K., Gallagher, J., Gerhardt, L., Ghorbani, K., Glauch, T., Glüsenkamp, T., Goldschmidt, A., Gonzalez, J. G., Grant, D., Griffith, Z., Haack, C., Hallgren, A., Halzen, F., Hanson, K., Hebecker, D., Heereman, D., Helbing, K., Hellauer, R., Hickford, S., Hignight, J., Hill, G. C., Hoffman, K. D., Hoffmann, R., Hoinka, T., Hokanson-Fasig, B., Hoshina, K., Huang, F., Huber, M., Hultqvist, K., Hünnefeld, M., Hussain, R., In, S., Iovine, N., Ishihara, A., Jacobi, E., Japaridze, G. S., Jeong, M., Jero, K., Jones, B. J. P., Kalaczynski, P., Kang, W., Kappes, A., Kappesser, D., Karg, T., Karle, A., Katz, U., Kauer, M., Keivani, A., Kelley, J. L., Kheirandish, A., Kim, J., Kim, M., Kintscher, T., Kiryluk, J., Kittler, T., Klein, S. R., Koirala, R., Kolanoski, H., Köpke, L., Kopper, C., Kopper, S., Koschinsky, J. P., Koskinen, D. J., Kowalski, M., Krings, K., Kroll, M., Krückl, G., Kunwar, S., Kurahashi, N., Kuwabara, T., Kyriacou, A., Labare, M., Lanfranchi, J. L., Larson, M. J., Lauber, F., Leonard, K., Lesiak-Bzdak, M., Leuermann, M., Liu, Q. R., Lozano Mariscal, C. J., Lu, L., Lünemann, J., Luszczak, W., Madsen, J., Maggi, G., Mahn, K. B. M., Mancina, S., Maruyama, R., Mase, K., Maunu, R., Meagher, K., Medici, M., Meier, M., Menne, T., Merino, G., Meures, T., Miarecki, S., Micallef, J., Momenté, G., Montaruli, T., Moore, R. W., Morse, R., Moulai, M., Nahnhauer, R., Nakarmi, P., Naumann, U., Neer, G., Niederhausen, H., Nowicki, S. C., Nygren, D. R., Obertacke Pollmann, A., Olivas, A., O’Murchadha, A., O’Sullivan, E., Palczewski, T., Pandya, H., Pankova, D. V., Peiffer, P., Pepper, J. A., Pérez de los Heros, C., Pieloth, D., Pinat, E., Plum, M., Price, P. B., Przybylski, G. T., Raab, C., Rädel, L., Rameez, M., Rauch, L., Rawlins, K., Rea, I. C., Reimann, R., Relethford, B., Relich, M., Resconi, E., Rhode, W., Richman, M., Robertson, S., Rongen, M., Rott, C., Ruhe, T., Ryckbosch, D., Rysewyk, D., Safa, I., Sälzer, T., Sanchez Herrera, S. E., Sandrock, A., Sandroos, J., Santander, M., Sarkar, S., Satalecka, K., Schlunder, P., Schmidt, T., Schneider, A., Schoenen, S., Schöneberg, S., Schumacher, L., Sclafani, S., Seckel, D., Seunarine, S., Soedingrekso, J., Soldin, D., Song, M., Spiczak, G. M., Spiering, C., Stachurska, J., Stamatikos, M., Stanev, T., Stasik, A., Stein, R., Stettner, J., Steuer, A., Stezelberger, T., Stokstad, R. G., Stößl, A., Strotjohann, N. L., Stuttard, T., Sullivan, G. W., Sutherland, M., Taboada, I., Tatar, J., Tenholt, F., Ter-Antonyan, S., Terliuk, A., Tilav, S., Toale, P. A., Tobin, M. N., Toennis, C., Toscano, S., Tosi, D., Tselengidou, M., Tung, C. F., Turcati, A., Turley, C. F., Ty, B., Unger, E., Usner, M., Vandenbroucke, J., Van Driessche, W., van Eijk, D., van Eijndhoven, N., Vanheule, S., van Santen, J., Vogel, E., Vraeghe, M., Walck, C., Wallace, A., Wallraff, M., Wandler, F. D., Wandkowsky, N., Waza, A., Weaver, C., Weiss, M. J., Wendt, C., Werthebach, J., Westerhoff, S., Whelan, B. J., Whitehorn, N., Wiebe, K., Wiebusch, C. H., Wille, L., Williams, D. R., Wills, L., Wolf, M., Wood, J., Wood, T. R., Woschnagg, K., Xu, D. L., Xu, X. W., Xu, Y., Yanez, J. P., Yodh, G., Yoshida, S., Yuan, T., Abdollahi, S., Ajello, M., Angioni, R., Baldini, L., Ballet, J., Barbiellini, G., Bastieri, D., Bechtol, K., Bellazzini, R., Berenji, B., Bissaldi, E., Blandford, R. D., Bonino, R., Bottacini, E., Bregeon, J., Bruel, P., Buehler, R., Burnett, T. H., Burns, E., Buson, S., Cameron, R. A., Caputo, R., Caraveo, P. A., Cavazzuti, E., Charles, E., Chen, S., Cheung, C. C., Chiang, J., Chiaro, G., Ciprini, S., Cohen-Tanugi, J., Conrad, J., Costantin, D., Cutini, S., D’Ammando, F., de Palma, F., Digel, S. W., Di Lalla, N., Di Mauro, M., Di Venere, L., Domínguez, A., Favuzzi, C., Fukazawa, Y., Funk, S., Fusco, P., Gargano, F., Gasparrini, D., Giglietto, N., Giomi, M., Giommi, P., Giordano, F., Giroletti, M., Glanzman, T., Green, D., Grenier, I. A., Grondin, M. -H., Guiriec, S., Harding, A. K., Hayashida, M., Hays, E., Hewitt, J. W., Horan, D., Jóhannesson, G., Kadler, M., Kensei, S., Kocevski, D., Krauss, F., Kreter, M., Kuss, M., La Mura, G., Larsson, S., Latronico, L., Lemoine-Goumard, M., Li, J., Longo, F., Loparco, F., Lovellette, M. N., Lubrano, P., Magill, J. D., Maldera, S., Malyshev, D., Manfreda, A., Mazziotta, M. N., Mcenery, J. E., Meyer, M., Michelson, P. F., Mizuno, T., Monzani, M. E., Morselli, A., Moskalenko, I. V., Negro, M., Nuss, E., Ojha, R., Omodei, N., Orienti, M., Orlando, E., Palatiello, M., Paliya, V. S., Perkins, J. S., Persic, M., Pesce-Rollins, M., Piron, F., Porter, T. A., Principe, G., Rainò, S., Rando, R., Rani, B., Razzano, M., Razzaque, S., Reimer, A., Reimer, O., Renault-Tinacci, N., Ritz, S., Rochester, L. S., Saz Parkinson, P. M., Sgrò, C., Siskind, E. J., Spandre, G., Spinelli, P., Suson, D. J., Tajima, H., Takahashi, M., Tanaka, Y., Thayer, J. B., Thompson, D. J., Tibaldo, L., Torres, D. F., Torresi, E., Tosti, G., Troja, E., Valverde, J., Vianello, G., Vogel, M., Wood, K., Wood, M., Zaharijas, G., Ahnen, M. L., Ansoldi, S., Antonelli, L. A., Arcaro, C., Baack, D., Babić, A., Banerjee, B., Bangale, P., Barres de Almeida, U., Barrio, J. A., Becerra González, J., Bednarek, W., Berti, A., Bhattacharyya, W., Biland, A., Blanch, O., Bonnoli, G., Carosi, A., Carosi, R., Ceribella, G., Chatterjee, A., Colak, S. M., Colin, P., Colombo, E., Contreras, J. L., Cortina, J., Covino, S., Cumani, P., Da Vela, P., Dazzi, F., De Angelis, A., De Lotto, B., Delfino, M., Delgado, J., Di Pierro, F., Dominis Prester, D., Dorner, D., Doro, M., Einecke, S., Elsaesser, D., Fallah Ramazani, V., Fernández-Barral, A., Fidalgo, D., Foffano, L., Pfrang, K., Fonseca, M. V., Font, L., Franceschini, A., Fruck, C., Galindo, D., Gallozzi, S., García López, R. J., Garczarczyk, M., Gaug, M., Giammaria, P., Godinović, N., Gora, D., Guberman, D., Hadasch, D., Hahn, A., Hassan, T., Herrera, J., Hose, J., Hrupec, D., Inoue, S., Ishio, K., Konno, Y., Kubo, H., Kushida, J., Lelas, D., Lindfors, E., Lombardi, S., López, M., Maggio, C., Majumdar, P., Makariev, M., Maneva, G., Manganaro, M., Mannheim, K., Maraschi, L., Mariotti, M., Martínez, M., Masuda, S., Mazin, D., Minev, M., M, J. M., Mirzoyan, R., Moralejo, A., Moreno, V., Moretti, E., Nagayoshi, T., Neustroev, V., Niedzwiecki, A., Nievas, Rosillo, M., Nigro, Nilsson, K., Ninci, D., Nishijima, K., Noda, K., Nogués, L., Paiano, S., Palacio, J., Paneque, D., Paoletti, R., Paredes, J. M., Pedaletti, G., Peresano, M., Prada Moroni, P. G., Prandini, E., Puljak, I., Rodriguez Garcia, J., Reichardt, I., Ribó, M., Rico, J., Righi, C., Rugliancich, A., Saito, T., Schweizer, T., Sitarek, J., Šnidarić, I., Sobczynska, D., Stamerra, A., Strzys, M., Surić, T., Tavecchio, F., Temnikov, P., Terzić, T., Teshima, M., Torres-Albà, N., Treves, A., Tsujimoto, S., Vanzo, G., Vazquez Acosta, M., Vovk, I., Ward, J. E., Will, M., Zarić, D., Lucarelli, F., Tavani, M., Piano, G., Donnarumma, I., Pittori, C., Verrecchia, F., Bulgarelli, A., Caraveo, P., Cattaneo, P. W., Colafrancesco, S., Costa, E., Di Cocco, G., Ferrari, A., Gianotti, F., Giuliani, A., Lipari, P., Mereghetti, S., Pacciani, L., Paoletti, F., Parmiggiani, N., Pellizzoni, A., Picozza, P., Pilia, M., Rappoldi, A., Trois, A., Vercellone, S., Vittorini, V., Stanek, K. Z., Kochanek, C. S., Beacom, J. F., Thompson, T. A., Holoien, T. W. -S., Dong, S., Prieto, J. L., Shappee, B. J., Holmbo, S., Abeysekara, A. U., Albert, A., Alfaro, R., Alvarez, C., Arceo, R., Arteaga-Velázquez, J. C., Avila Rojas, D., Ayala Solares, H. A., Becerril, A., Belmont-Moreno, E., Bernal, A., Caballero-Mora, K. S., Capistrán, T., Carramiñana, A., Casanova, S., Castillo, M., Cotti, U., Cotzomi, J., Coutiño de León, S., De León, C., De la Fuente, E., Diaz Hernandez, R., Dichiara, S., Dingus, B. L., Duvernois, M. A., Ellsworth, R. W., Engel, K., Fiorino, D. W., Fleischhack, H., Fraija, N., García-González, J. A., Garfias, F., González Muñoz, A., González, M. M., Goodman, J. A., Hampel-Arias, Z., Harding, J. P., Hernandez, S., Hona, B., Hueyotl-Zahuantitla, F., Hui, C. M., Hüntemeyer, P., Iriarte, A., Jardin-Blicq, A., Joshi, V., Kaufmann, S., Kunde, G. J., Lara, A., Lauer, R. J., Lee, W. H., Lennarz, D., León Vargas, H., Linnemann, J. T., Longinotti, A. L., Luis-Raya, G., Luna-García, R., Malone, K., Marinelli, S. S., Martinez, O., Martinez-Castellanos, I., Martínez-Castro, J., Martínez-Huerta, H., Matthews, J. A., Miranda-Romagnoli, P., Moreno, E., Mostafá, M., Nayerhoda, A., Nellen, L., Newbold, M., Nisa, M. U., Noriega-Papaqui, R., Pelayo, R., Pretz, J., Pérez-Pérez, E. G., Ren, Z., Rho, C. D., Rivière, C., Rosa-González, D., Rosenberg, M., Ruiz-Velasco, E., Salesa Greus, F., Sandoval, A., Schneider, M., Schoorlemmer, H., Sinnis, G., Smith, A. J., Springer, R. W., Surajbali, P., Tibolla, O., Tollefson, K., Torres, I., Villaseñor, L., Weisgarber, T., Werner, F., Yapici, T., Gaurang, Y., Zepeda, A., Zhou, H., Álvarez, J. D., Abdalla, H., Angüner, E. O., Armand, C., Backes, M., Becherini, Y., Berge, D., Böttcher, M., Boisson, C., Bolmont, J., Bonnefoy, S., Bordas, P., Brun, F., Büchele, M., Bulik, T., Caroff, S., Cerruti, M., Chakraborty, N., Chandra, S., Chen, A., Davids, I. D., Deil, C., Devin, J., Djannati-Ataï, A., Egberts, K., Emery, G., Eschbach, S., Fiasson, A., Fontaine, G., Füßling, M., Gallant, Y. A., Gaté, F., Giavitto, G., Glawion, D., Glicenstein, J. F., Gottschall, D., Haupt, M., Henri, G., Hinton, J. A., Hoischen, C., Holch, T. L., Huber, D., Jamrozy, M., Jankowsky, D., Jankowsky, F., Jouvin, L., Jung-Richardt, I., Kerszberg, D., Khélifi, B., King, J., Klepser, S., Kluźniak, W., Komin, Nu., Kraus, M., Lefaucheur, J., Lemière, A., Lenain, J. -P., Leser, E., Lohse, T., López-Coto, R., Lorentz, M., Lypova, I., Marandon, V., Guillem Martí-Devesa, G., Maurin, G., Mitchell, A. M. W., Moderski, R., Mohamed, M., Mohrmann, L., Moulin, E., Murach, T., de Naurois, M., Niederwanger, F., Niemiec, J., Oakes, L., O’Brien, P., Ohm, S., Ostrowski, M., Oya, I., Panter, M., Parsons, R. D., Perennes, C., Piel, Q., Pita, S., Poireau, V., Priyana Noel, A., Prokoph, H., Pühlhofer, G., Quirrenbach, A., Raab, S., Rauth, R., Renaud, M., Rieger, F., Rinchiuso, L., Romoli, C., Rowell, G., Rudak, B., Sanchez, D. A., Sasaki, M., Schlickeiser, R., Schüssler, F., Schulz, A., Schwanke, U., Seglar-Arroyo, M., Shafi, N., Simoni, R., Sol, H., Stegmann, C., Steppa, C., Tavernier, T., Taylor, A. M., Tiziani, D., Trichard, C., Tsirou, M., van Eldik, C., van Rensburg, C., van Soelen, B., Veh, J., Vincent, P., Voisin, F., Wagner, S. J., Wagner, R. M., Wierzcholska, A., Zanin, R., Zdziarski, A. A., Zech, A., Ziegler, A., Zorn, J., Żywucka, N., Savchenko, V., Ferrigno, C., Bazzano, A., Diehl, R., Kuulkers, E., Laurent, P., Natalucci, L., Panessa, F., Rodi, J., Ubertini, P., Morokuma, T., Ohta, K., Tanaka, Y. T., Mori, H., Yamanaka, M., Kawabata, K. S., Utsumi, Y., Nakaoka, T., Kawabata, M., Nagashima, H., Yoshida, M., Matsuoka, Y., Itoh, R., Keel, W., Copperwheat, C., Steele, I., Cenko, S. B., Evans, P. A., Fox, D. B., Kennea, J. A., Marshall, F. E., Osborne, J. P., Tohuvavohu, A., Archer, A., Benbow, W., Bird, R., Brill, A., Brose, R., Buchovecky, M., Buckley, J. H., Bugaev, V., Christiansen, J. L., Connolly, M. P., Cui, W., Daniel, M. K., Errando, M., Falcone, A., Feng, Q., Finley, J. P., Fortson, L., Furniss, A., Gueta, O., Hütten, M., Hervet, O., Hughes, G., Humensky, T. B., Johnson, C. A., Kaaret, P., Kar, P., Kelley-Hoskins, N., Kertzman, M., Kieda, D., Krause, M., Krennrich, F., Kumar, S., Lang, M. J., Lin, T. T. Y., Maier, G., Mcarthur, S., Moriarty, P., Mukherjee, R., Nieto, D., O’Brien, S., Ong, R. A., Otte, A. N., Park, N., Petrashyk, A., Pohl, M., Popkow, A., Pueschel, E., Quinn, J., Ragan, K., Reynolds, P. T., Richards, G. T., Roache, E., Rulten, C., Sadeh, I., Scott, S. S., Sembroski, G. H., Shahinyan, K., Sushch, I., Trépanier, S., Tyler, J., Vassiliev, V. V., Wakely, S. P., Weinstein, A., Wells, R. M., Wilcox, P., Wilhelm, A., Williams, D. A., Zitzer, B., Tetarenko, A. J., Kimball, A. E., Miller-Jones, J. C. A., Sivakoff, G. R., Physics, Elementary Particle Physics, Vriendenkring VUB, Faculty of Sciences and Bioengineering Sciences, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Współautorami artykułu są członkowie różnych grup badawczych w liczbie 875, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
High energy ,Kanata ,Swift/NuSTAR ,Astrophysics ,Blazar ,blazar: emission ,01 natural sciences ,7. Clean energy ,Coincidence ,Multidisciplinary, Blazar, Neutrino ,High Energy Physics - Experiment ,neutrino ,High Energy Physics - Experiment (hep-ex) ,ASAS-SN ,010303 astronomy & astrophysics ,HESS - Abteilung Hofmann ,Computer Science::Databases ,Physics ,HAWC - Abteilung Hinton ,High Energy Astrophysical Phenomena (astro-ph.HE) ,COSMIC cancer database ,Multidisciplinary ,Supernova ,gamma ray: emission ,VERITAS ,Neutrino ,Kapteyn ,Astrophysics - High Energy Astrophysical Phenomena ,General Science & Technology ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,IceCube Collaboration ,jet: relativistic ,AGILE ,Coincident ,Subaru ,0103 physical sciences ,Kiso ,supernova ,neutrino event IceCube-170922A ,gamma-ray blazar TXS 0506+056 ,quasar ,Astrophysics::Galaxy Astrophysics ,ta115 ,010308 nuclear & particles physics ,INTEGRAL ,background ,Liverpool Telescope ,VLA/17B-403 teams ,MAGIC ,messenger ,flux ,gamma ray: VHE ,13. Climate action ,general ,Diffuse flux ,High Energy Physics::Experiment ,Fermi-LAT ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,HAWC ,H.E.S.S - Abstract
INTRODUCTION Neutrinos are tracers of cosmic-ray acceleration: electrically neutral and traveling at nearly the speed of light, they can escape the densest environments and may be traced back to their source of origin. High-energy neutrinos are expected to be produced in blazars: intense extragalactic radio, optical, x-ray, and, in some cases, γ-ray sources characterized by relativistic jets of plasma pointing close to our line of sight. Blazars are among the most powerful objects in the Universe and are widely speculated to be sources of high-energy cosmic rays. These cosmic rays generate high-energy neutrinos and γ-rays, which are produced when the cosmic rays accelerated in the jet interact with nearby gas or photons. On 22 September 2017, the cubic-kilometer IceCube Neutrino Observatory detected a ~290-TeV neutrino from a direction consistent with the flaring γ-ray blazar TXS 0506+056. We report the details of this observation and the results of a multiwavelength follow-up campaign. RATIONALE Multimessenger astronomy aims for globally coordinated observations of cosmic rays, neutrinos, gravitational waves, and electromagnetic radiation across a broad range of wavelengths. The combination is expected to yield crucial information on the mechanisms energizing the most powerful astrophysical sources. That the production of neutrinos is accompanied by electromagnetic radiation from the source favors the chances of a multiwavelength identification. In particular, a measured association of high-energy neutrinos with a flaring source of γ-rays would elucidate the mechanisms and conditions for acceleration of the highest-energy cosmic rays. The discovery of an extraterrestrial diffuse flux of high-energy neutrinos, announced by IceCube in 2013, has characteristic properties that hint at contributions from extragalactic sources, although the individual sources remain as yet unidentified. Continuously monitoring the entire sky for astrophysical neutrinos, IceCube provides real-time triggers for observatories around the world measuring γ-rays, x-rays, optical, radio, and gravitational waves, allowing for the potential identification of even rapidly fading sources. RESULTS A high-energy neutrino-induced muon track was detected on 22 September 2017, automatically generating an alert that was distributed worldwide within 1 min of detection and prompted follow-up searches by telescopes over a broad range of wavelengths. On 28 September 2017, the Fermi Large Area Telescope Collaboration reported that the direction of the neutrino was coincident with a cataloged γ-ray source, 0.1° from the neutrino direction. The source, a blazar known as TXS 0506+056 at a measured redshift of 0.34, was in a flaring state at the time with enhanced γ-ray activity in the GeV range. Follow-up observations by imaging atmospheric Cherenkov telescopes, notably the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes, revealed periods where the detected γ-ray flux from the blazar reached energies up to 400 GeV. Measurements of the source have also been completed at x-ray, optical, and radio wavelengths. We have investigated models associating neutrino and γ-ray production and find that correlation of the neutrino with the flare of TXS 0506+056 is statistically significant at the level of 3 standard deviations (sigma). On the basis of the redshift of TXS 0506+056, we derive constraints for the muon-neutrino luminosity for this source and find them to be similar to the luminosity observed in γ-rays. CONCLUSION The energies of the γ-rays and the neutrino indicate that blazar jets may accelerate cosmic rays to at least several PeV. The observed association of a high-energy neutrino with a blazar during a period of enhanced γ-ray emission suggests that blazars may indeed be one of the long-sought sources of very-high-energy cosmic rays, and hence responsible for a sizable fraction of the cosmic neutrino flux observed by IceCube.
- Published
- 2018
- Full Text
- View/download PDF
20. HAWC: A next generation all-sky gamma-ray telescope
- Author
-
Andrew J Smith and the HAWC Collaboration
- Subjects
Physics ,History ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Particle detector ,Computer Science Applications ,Education ,Observatory ,Sky ,Milagro ,Transit (astronomy) ,Cherenkov radiation ,media_common ,Fermi Gamma-ray Space Telescope - Abstract
HAWC will have unprecedented sensitivity for a ground based particle detector array. It will be capable of observing the Crab at the 5σ level with each transit while simultaneously observing the entire northern sky (15 times the current Milagro detector sensitivity). The design an performance of the HAWC water Cherenkov gamma-ray observatory is presented.
- Published
- 2007
- Full Text
- View/download PDF
21. Full-Sky Analysis of Cosmic-Ray Anisotropy with IceCube and HAWC
- Author
-
The HAWC Collaboration and The IceCube Collaboration
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
During the past two decades, experiments in both the Northern and Southern hemispheres have observed a small but measurable energy-dependent sidereal anisotropy in the arrival direction distribution of galactic cosmic rays. The relative amplitude of the anisotropy is $10^{-4} - 10^{-3}$. However, each of these individual measurements is restricted by limited sky coverage, and so the pseudo-power spectrum of the anisotropy obtained from any one measurement displays a systematic correlation between different multipole modes $C_\ell$. To address this issue, we present the preliminary status of a joint analysis of the anisotropy on all angular scales using cosmic-ray data from the IceCube Neutrino Observatory located at the South Pole ($90^\circ$ S) and the High-Altitude Water Cherenkov (HAWC) Observatory located at Sierra Negra, Mexico ($19^\circ$ N). We describe the methods used to combine the IceCube and HAWC data, address the individual detector systematics and study the region of overlapping field of view between the two observatories., (1) http://www.hawc-observatory.org/collaboration/icrc2015.php, (2) http://icecube.wisc.edu/collaboration/authors/icrc15_icecube Presented at the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. See arXiv:1508.03327 for all HAWC contributions
- Published
- 2015
22. Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory
- Author
-
HAWC Collaboration, Abeysekara, A., Albert, A., Alfaro, R., Alvarez, C., Álvarez, J., Arceo, R., Arteaga-Velázquez, J., Solares, H., Barber, A., Bautista-Elivar, N., Becerril, A., Belmont-Moreno, E., BenZvi, S., Berley, D., Braun, J., Brisbois, C., Caballero-Mora, K., Capistrán, T., Carramiñana, A., Casanova, S., Castillo, M., Cotti, U., Cotzomi, J., de León, S., de la Fuente, E., De León, C., DeYoung, T., Dingus, B., DuVernois, M., Díaz-Vélez, J., Ellsworth, R., Fiorino, D., Fraija, N., García-González, J., Gerhardt, M., Munoz, A., González, M., Goodman, J., Hampel-Arias, Z., Harding, J., Hernandez, S., Hernandez-Almada, A., Hinton, J., Hui, C., Hüntemeyer, P., Iriarte, A., Jardin-Blicq, A., Joshi, V., Kaufmann, S., Kieda, D., Lara, A., Lauer, R., Lee, W., Lennarz, D., Vargas, H., Linnemann, J., Longinotti, A., Raya, G., Luna-García, R., López-Coto, R., Malone, K., Marinelli, S., Martinez, O., Martinez-Castellanos, I., Martínez-Castro, J., Martínez-Huerta, H., Matthews, J., Miranda-Romagnoli, P., Moreno, E., Mostafá, M., Nellen, L., Newbold, M., Nisa, M., Noriega-Papaqui, R., Pelayo, R., Pretz, J., Pérez-Pérez, E., Ren, Z., Rho, C., Rivière, C., Rosa-González, D., Rosenberg, M., Ruiz Velasco, E., Salazar, H., Greus, F., Sandoval, A., Schneider, M., Schoorlemmer, H., Sinnis, G., Smith, A., Springer, R., Surajbali, P., Taboada, I., Tibolla, O., Tollefson, K., Torres, I., Ukwatta, T., Villaseñor, L., Weisgarber, T., Westerhoff, S., Wisher, I., Wood, J., Yapici, T., Yodh, G., Younk, P., Zepeda, A., and Zhou, H.
- Subjects
HAWC - Abteilung Hinton ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,FOS: Physical sciences ,Flux ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,Crab Nebula ,Space and Planetary Science ,Observatory ,Sky ,0103 physical sciences ,High Energy Physics::Experiment ,Sensitivity (control systems) ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,Energy (signal processing) ,Cherenkov radiation ,media_common - Abstract
The Crab Nebula is the brightest TeV gamma-ray source in the sky and has been used for the past 25 years as a reference source in TeV astronomy, for calibration and verification of new TeV instruments. The High Altitude Water Cherenkov Observatory (HAWC), completed in early 2015, has been used to observe the Crab Nebula at high significance across nearly the full spectrum of energies to which HAWC is sensitive. HAWC is unique for its wide field-of-view, nearly 2 sr at any instant, and its high-energy reach, up to 100 TeV. HAWC's sensitivity improves with the gamma-ray energy. Above $\sim$1 TeV the sensitivity is driven by the best background rejection and angular resolution ever achieved for a wide-field ground array. We present a time-integrated analysis of the Crab using 507 live days of HAWC data from 2014 November to 2016 June. The spectrum of the Crab is fit to a function of the form $\phi(E) = \phi_0 (E/E_{0})^{-\alpha -\beta\cdot{\rm{ln}}(E/E_{0})}$. The data is well-fit with values of $\alpha=2.63\pm0.03$, $\beta=0.15\pm0.03$, and log$_{10}(\phi_0~{\rm{cm}^2}~{\rm{s}}~{\rm{TeV}})=-12.60\pm0.02$ when $E_{0}$ is fixed at 7 TeV and the fit applies between 1 and 37 TeV. Study of the systematic errors in this HAWC measurement is discussed and estimated to be $\pm$50\% in the photon flux between 1 and 37 TeV. Confirmation of the Crab flux serves to establish the HAWC instrument's sensitivity for surveys of the sky. The HAWC survey will exceed sensitivity of current-generation observatories and open a new view of 2/3 of the sky above 10 TeV., Comment: Submitted 2017/01/06 to the Astrophysical Journal
- Published
- 2017
- Full Text
- View/download PDF
23. Daily Monitoring of TeV Gamma-Ray Emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC
- Author
-
HAWC Collaboration, Abeysekara, A., Albert, A., Alfaro, R., Alvarez, C., Álvarez, J., Arceo, R., Arteaga-Velázquez, J., Rojas, D., Solares, H., Barber, A., Bautista-Elivar, N., Gonzalez, J., Becerril, A., Belmont-Moreno, E., BenZvi, S., Bernal, A., Braun, J., Brisbois, C., Caballero-Mora, K., Capistrán, T., Carramiñana, A., Casanova, S., Castillo, M., Cotti, U., Cotzomi, J., de León, S., De León, C., De la Fuente, E., Hernandez, R., Dingus, B., DuVernois, M., Díaz-Vélez, J., Ellsworth, R., Engel, K., Fiorino, D., Fraija, N., García-González, J., Garfias, F., Gerhardt, M., Muñoz, A., González, M., Goodman, J., Hampel-Arias, Z., Harding, J., Hernandez, S., Hernandez-Almada, A., Hona, B., Hui, C., Hüntemeyer, P., Iriarte, A., Jardin-Blicq, A., Joshi, V., Kaufmann, S., Kieda, D., Lara, A., Lauer, R., Lee, W., Lennarz, D., Vargas, H., Linnemann, J., Longinotti, A., Raya, G., Luna-García, R., López-Coto, R., Malone, K., Marinelli, S., Martinez, O., Martinez-Castellanos, I., Martínez-Castro, J., Matthews, J., Miranda-Romagnoli, P., Moreno, E., Mostafá, M., Nellen, L., Newbold, M., Nisa, M., Noriega-Papaqui, R., Pretz, J., Pérez-Pérez, E., Ren, Z., Rho, C., Rivière, C., Rosa-González, D., Rosenberg, M., Ruiz Velasco, E., Greus, F., Sandoval, A., Schneider, M., Schoorlemmer, H., Sinnis, G., Smith, A., Springer, R., Surajbali, P., Taboada, I., Tibolla, O., Tollefson, K., Torres, I., Ukwatta, T., Vianello, G., Weisgarber, T., Westerhoff, S., Wisher, I., Wood, J., Yapici, T., Younk, P., Zepeda, A., and Zhou, H.
- Subjects
HAWC - Abteilung Hinton ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Gamma ray ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Light curve ,01 natural sciences ,Crab Nebula ,Space and Planetary Science ,Observatory ,Sidereal time ,0103 physical sciences ,High Energy Physics::Experiment ,Astrophysics - High Energy Astrophysical Phenomena ,Blazar ,010303 astronomy & astrophysics ,Cherenkov radiation ,Energy (signal processing) - Abstract
We present results from daily monitoring of gamma rays in the energy range $\sim0.5$ to $\sim100$ TeV with the first 17 months of data from the High Altitude Water Cherenkov (HAWC) Observatory. Its wide field of view of 2 steradians and duty cycle of $>95$% are unique features compared to other TeV observatories that allow us to observe every source that transits over HAWC for up to $\sim6$ hours each sidereal day. This regular sampling yields unprecedented light curves from unbiased measurements that are independent of seasons or weather conditions. For the Crab Nebula as a reference source we find no variability in the TeV band. Our main focus is the study of the TeV blazars Markarian (Mrk) 421 and Mrk 501. A spectral fit for Mrk 421 yields a power law index $\Gamma=2.21 \pm0.14_{\mathrm{stat}}\pm0.20_{\mathrm{sys}}$ and an exponential cut-off $E_0=5.4 \pm 1.1_{\mathrm{stat}}\pm 1.0_{\mathrm{sys}}$ TeV. For Mrk 501, we find an index $\Gamma=1.60\pm 0.30_{\mathrm{stat}} \pm 0.20_{\mathrm{sys}}$ and exponential cut-off $E_0=5.7\pm 1.6_{\mathrm{stat}} \pm 1.0_{\mathrm{sys}}$ TeV. The light curves for both sources show clear variability and a Bayesian analysis is applied to identify changes between flux states. The highest per-transit fluxes observed from Mrk 421 exceed the Crab Nebula flux by a factor of approximately five. For Mrk 501, several transits show fluxes in excess of three times the Crab Nebula flux. In a comparison to lower energy gamma-ray and X-ray monitoring data with comparable sampling we cannot identify clear counterparts for the most significant flaring features observed by HAWC., Comment: 18 pages, 10 figures, accepted for publication in The Astrophysical Journal
- Published
- 2017
- Full Text
- View/download PDF
24. Search for gamma-rays from the unusually bright GRB 130427A with the HAWC Gamma-ray Observatory
- Author
-
The HAWC collaboration, Abeysekara, A. U., Alfaro, R., Alvarez, C., Álvarez, J. D., Arceo, R., Arteaga-Velázquez, J. C., Solares, H. A. Ayala, Barber, A. S., Baughman, B. M., Bautista-Elivar, N., BenZvi, S. Y., Rosales, M. Bonilla, Braun, J., Caballero-Mora, K. S., Carramiñana, A., Castillo, M., Cotti, U., Cotzomi, J., de la Fuente, E., De León, C., DeYoung, T., Hernandez, R. Diaz, Dingus, B. L., DuVernois, M. A., Ellsworth, R. W., Fiorino, D. W., Fraija, N., Galindo, A., Garfias, F., González, M. M., Goodman, J. A., Gussert, M., Hampel-Arias, Z., Harding, J. P., Hüntemeyer, P., Hui, C. M., Imran, A., Iriarte, A., Karn, P., Kieda, D., Kunde, G. J., Lara, A., Lauer, R. J., Lee, W. H., Lennarz, D., Vargas, H. León, Linnemann, J. T., Longo, M., Luna-García, R., Malone, K., Marinelli, A., Marinelli, S. S., Martinez, H., Martinez, O., Martínez-Castro, J., Matthews, J. A., Torres, E. Mendoza, Miranda-Romagnoli, P., Moreno, E., Mostafá, M., Nellen, L., Newbold, M., Noriega-Papaqui, R., Oceguera-Becerra, T. O., Patricelli, B., Pelayo, R., Pérez-Pérez, E. G., Pretz, J., Rivière, C., Rosa-González, D., Salazar, H., Greus, F. Salesa, Sandoval, A., Schneider, M., Sinnis, G., Smith, A. J., Woodle, K. Sparks, Springer, R. W., Taboada, I., Tollefson, K., Torres, I., Ukwatta, T. N., Villaseñor, L., Weisgarber, T., Westerhoff, S., Wisher, I. G., Wood, J., Yodh, G. B., Younk, P. W., Zaborov, D., Zepeda, A., and Zhou, H.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,Physical Chemistry ,Atomic ,Particle and Plasma Physics ,Observatory ,Nuclear ,Cherenkov radiation ,astro-ph.HE ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Molecular ,GRB 130427A ,Astronomy and Astrophysics ,Light curve ,Redshift ,Extragalactic background light ,individual [gamma-ray burst] ,Space and Planetary Science ,Gamma-ray burst ,Astrophysics - High Energy Astrophysical Phenomena ,general [gamma rays] ,Astronomical and Space Sciences ,Physical Chemistry (incl. Structural) ,Fermi Gamma-ray Space Telescope - Abstract
The first limits on the prompt emission from the long gamma-ray burst (GRB) 130427A in the $>100\nobreakspace\rm{GeV}$ energy band are reported. GRB 130427A was the most powerful burst ever detected with a redshift $z\lesssim0.5$ and featured the longest lasting emission above $100\nobreakspace\rm{MeV}$. The energy spectrum extends at least up to $95\nobreakspace\rm{GeV}$, clearly in the range observable by the High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory, a new extensive air shower detector currently under construction in central Mexico. The burst occurred under unfavourable observation conditions, low in the sky and when HAWC was running 10% of the final detector. Based on the observed light curve at MeV-GeV energies, eight different time periods have been searched for prompt and delayed emission from this GRB. In all cases, no statistically significant excess of counts has been found and upper limits have been placed. It is shown that a similar GRB close to zenith would be easily detected by the full HAWC detector, which will be completed soon. The detection rate of the full HAWC detector may be as high as one to two GRBs per year. A detection could provide important information regarding the high energy processes at work and the observation of a possible cut-off beyond the $\mathit{Fermi}$-LAT energy range could be the signature of gamma-ray absorption, either in the GRB or along the line of sight due to the extragalactic background light., 10 pages, 4 figures, published in ApJ
- Published
- 2014
25. The HAWC Gamma-Ray Observatory: Observations of Cosmic Rays
- Author
-
Hawc, Collaboration, Abeysekara, A. U., Alfaro, R., Alvarez, C., Álvarez, J. D., Arceo, R., Arteaga-Velázquez, J. C., Ayala Solares, H. A., Barber, A. S., Baughman, B. M., Bautista-Elivar, N., Belmont, E., Benzvi, S. Y., Berley, D., Bonilla Rosales, M., Braun, J., Caballero-Lopez, R. A., Caballero-Mora, K. S., Carramiñana, A., Castillo, M., Cotti, U., Cotzomi, J., Eduardo de la Fuente, León, C., Deyoung, T., Diaz Hernandez, R., Díaz-Vélez, J. C., Dingus, B. L., Duvernois, M. A., Ellsworth, R. W., Fernandez, A., Fiorino, D. W., Fraija, N., Galindo, A., Garfias, F., González, L. X., González, M. M., Goodman, J. A., Grabski, V., Gussert, M., Hampel-Arias, Z., Hui, C. M., Hüntemeyer, P., Imran, A., Iriarte, A., Karn, P., Kieda, D., Kunde, G. J., Lara, A., Lauer, R. J., Lee, W. H., Lennarz, D., León Vargas, H., Linares, E. C., Linnemann, J. T., Longo, M., Luna-Garcia, R., Marinelli, A., Martinez, H., Martinez, O., Martínez-Castro, J., Matthews, J. A. J., Miranda-Romagnoli, P., Moreno, E., Mostafá, M., Nava, J., Nellen, L., Newbold, M., Noriega-Papaqui, R., Oceguera-Becerra, T., Patricelli, B., Pelayo, R., Pérez-Pérez, E. G., Pretz, J., Rivière, C., Rosa-González, D., Salazar, H., Salesa, F., Sanchez, F. E., Sandoval, A., Santos, E., Schneider, M., Silich, S., Sinnis, G., Smith, A. J., Sparks, K., Springer, R. W., Taboada, I., Toale, P. A., Tollefson, K., Torres, I., Ukwatta, T. N., Villaseñor, L., Weisgarber, T., Westerhoff, S., Wisher, I. G., Wood, J., Yodh, G. B., Younk, P. W., Zaborov, D., Zepeda, A., and Zhou, H.
- Subjects
astro-ph.HE ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::High Energy Astrophysical Phenomena ,Physics::Space Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
We describe measurements of GeV and TeV cosmic rays with the High-Altitude Water Cherenkov Gamma-Ray Observatory, or HAWC. The measurements include the observation of the shadow of the moon; the observation of small-scale and large-scale angular clustering of the TeV cosmic rays; the prospects for measurement of transient solar events with HAWC; and the observation of Forbush decreases with the HAWC engineering array and HAWC-30., Contributions to the 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, July 2013
- Published
- 2013
26. The HAWC Gamma-Ray Observatory: Dark Matter, Cosmology, and Fundamental Physics
- Author
-
Hawc, Collaboration, Abeysekara, A. U., Alfaro, R., Alvarez, C., Álvarez, J. D., Arceo, R., Arteaga-Velázquez, J. C., Ayala Solares, H. A., Barber, A. S., Baughman, B. M., Bautista-Elivar, N., Belmont, E., Benzvi, S. Y., Berley, D., Bonilla Rosales, M., Braun, J., Caballero-Lopez, R. A., Caballero-Mora, K. S., Carramiñana, A., Castillo, M., Cotti, U., Cotzomi, J., Eduardo de la Fuente, León, C., Deyoung, T., Diaz Hernandez, R., Díaz-Vélez, J. C., Dingus, B. L., Duvernois, M. A., Ellsworth, R. W., Fernandez, A., Fiorino, D. W., Fraija, N., Galindo, A., Garfias, F., González, L. X., González, M. M., Goodman, J. A., Grabski, V., Gussert, M., Hampel-Arias, Z., Hui, C. M., Hüntemeyer, P., Imran, A., Iriarte, A., Karn, P., Kieda, D., Kunde, G. J., Lara, A., Lauer, R. J., Lee, W. H., Lennarz, D., León Vargas, H., Linares, E. C., Linnemann, J. T., Longo, M., Luna-Garcia, R., Marinelli, A., Martinez, H., Martinez, O., Martínez-Castro, J., Matthews, J. A. J., Miranda-Romagnoli, P., Moreno, E., Mostafá, M., Nava, J., Nellen, L., Newbold, M., Noriega-Papaqui, R., Oceguera-Becerra, T., Patricelli, B., Pelayo, R., Pérez-Pérez, E. G., Pretz, J., Rivière, C., Rosa-González, D., Salazar, H., Salesa, F., Sanchez, F. E., Sandoval, A., Santos, E., Schneider, M., Silich, S., Sinnis, G., Smith, A. J., Sparks, K., Springer, R. W., Taboada, I., Toale, P. A., Tollefson, K., Torres, I., Ukwatta, T. N., Villaseñor, L., Weisgarber, T., Westerhoff, S., Wisher, I. G., Wood, J., Yodh, G. B., Younk, P. W., Zaborov, D., Zepeda, A., and Zhou, H.
- Subjects
astro-ph.HE ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The High-Altitude Water Cherenkov Gamma Ray Observatory (HAWC) is designed to perform a synoptic survey of the TeV sky. The high energy coverage of the experiment will enable studies of fundamental physics beyond the Standard Model, and the large field of view of the detector will enable detailed studies of cosmologically significant backgrounds and magnetic fields. We describe the sensitivity of the full HAWC array to these phenomena in five contributions shown at the 33rd International Cosmic Ray Conference in Rio de Janeiro, Brazil (July 2013)., Comment: Contributions to the 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, July 2013
- Published
- 2013
- Full Text
- View/download PDF
27. Sensitivity of HAWC to gamma ray bursts
- Author
-
Ignacio Taboada and null HAWC Collaboration
- Subjects
Physics ,Particle acceleration ,Large field of view ,Astrophysics::High Energy Astrophysical Phenomena ,Milagro ,Gamma ray detectors ,Astronomy ,Astrophysics ,Sensitivity (control systems) ,Gamma-ray burst ,Independent data ,Fermi Gamma-ray Space Telescope - Abstract
HAWC is a ground based very high-energy gamma ray detector under construction in Mexico at an altitude of 4100 m a.s.l. Higher altitude, improved design and a larger physical size used to reject CR background, make HAWC 10-20 times more sensitive than its predecessor Milagro. HAWC's large field of view, ≈2sr, and over 90% duty cycle make it ideal to search for GRBs. We review the sensitivity of HAWC to GRBs with two independent data acquisition systems. We show that some of the brightest GRBs observed by Fermi LAT (e.g. GRB 090510) could result in >5 σ observation by HAWC. The observations (or limits) of GRBs by HAWC will provide information on the high-energy spectra of GRBs. The high-energy spectra will teach us about extra galactic background light, the Lorentz boost factor of the jets tha power GRBs and/or particle acceleration models of GRBs. Finally we present limits on > 10 GeV emission from GRB 111016B, recently studied with HAWC's engineering array VAMOS.
- Published
- 2012
- Full Text
- View/download PDF
28. On the sensitivity of the HAWC observatory to gamma-ray bursts
- Author
-
HAWC collaboration, Abeysekara, A. U., Aguilar, J. A., Aguilar, S., Alfaro, R., Almaraz, E., Álvarez, C., Álvarez-Romero, J. de D., Álvarez, M., Arceo, R., Arteaga-Velázquez, J. C., Badillo, C., Barber, A., Baughman, B. M., Bautista-Elivar, N., Belmont, E., Benítez, E., BenZvi, S. Y., Berley, D., Bernal, A., Bonamente, E., Braun, J., Caballero-Lopez, R., Cabrera, I., Carramiñana, A., Carrasco, L., Castillo, M., Chambers, L., Conde, R., Condreay, P., Cotti, U., Cotzomi, J., D'Olivo, J. C., de la Fuente, E., De León, C., Delay, S., Delepine, D., DeYoung, T., Diaz, L., Diaz-Cruz, L., Dingus, B. L., Duvernois, M. A., Edmunds, D., Ellsworth, R. W., Fick, B., Fiorino, D. W., Flandes, A., Fraija, N. I., Galindo, A., García-Luna, J. L., García-Torales, G., Garfias, F., González, L. X., González, M. M., Goodman, J. A., Grabski, V., Gussert, M., Guzmán-Ceron, C., Hampel-Arias, Z., Harris, T., Hays, E., Hernandez-Cervantes, L., Hüntemeyer, P. H., Imran, A., Iriarte, A., Jimenez, J. J., Karn, P., Kelley-Hoskins, N., Kieda, D., Langarica, R., Lara, A., Lauer, R., Lee, W. H., Linares, E. C., Linnemann, J. T., Longo, M., Luna-García, R., Martínez, H., Martínez, J., Martínez, L. A., Martínez, O., Martínez-Castro, J., Martos, M., Matthews, J., McEnery, J. E., Medina-Tanco, G., Mendoza-Torres, J. E., Miranda-Romagnoli, P. A., Montaruli, T., Moreno, E., Mostafa, M., Napsuciale, M., Nava, J., Nellen, L., Newbold, M., Noriega-Papaqui, R., Oceguera-Becerra, T., Tapia, A. Olmos, Orozco, V., Pérez, V., Pérez-Pérez, E. G., Perkins, J. S., Pretz, J., Ramirez, C., Ramírez, I., Rebello, D., Rentería, A., Reyes, J., Rosa-González, D., Rosado, A., Ryan, J. M., Sacahui, J. R., Salazar, H., Salesa, F., Sandoval, A., Santos, E., Schneider, M., Shoup, A., Silich, S., Sinnis, G., Smith, A. J., Sparks, K., Springer, W., Suárez, F., Suarez, N., Taboada, I., Tellez, A. F., Tenorio-Tagle, G., Tepe, A., Toale, P. A., Tollefson, K., Torres, I., Ukwatta, T. N., Valdes-Galicia, J., Vanegas, P., Vasileiou, V., Vázquez, O., Vázquez, X., Villaseñor, L., Wall, W., Walters, J. S., Warner, D., Westerhoff, S., Wisher, I. G., Wood, J., Yodh, G. B., Zaborov, D., and Zepeda, A.
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Photomultiplier ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Gamma ray ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Gamma-ray bursts ,Extragalactic background light ,Observatory ,Gamma-ray burst ,Astrophysics - High Energy Astrophysical Phenomena ,Cherenkov radiation ,Noise (radio) ,Fermi Gamma-ray Space Telescope - Abstract
We present the sensitivity of HAWC to Gamma Ray Bursts (GRBs). HAWC is a very high-energy gamma-ray observatory currently under construction in Mexico at an altitude of 4100 m. It will observe atmospheric air showers via the water Cherenkov method. HAWC will consist of 300 large water tanks instrumented with 4 photomultipliers each. HAWC has two data acquisition (DAQ) systems. The main DAQ system reads out coincident signals in the tanks and reconstructs the direction and energy of individual atmospheric showers. The scaler DAQ counts the hits in each photomultiplier tube (PMT) in the detector and searches for a statistical excess over the noise of all PMTs. We show that HAWC has a realistic opportunity to observe the high-energy power law components of GRBs that extend at least up to 30 GeV, as it has been observed by Fermi LAT. The two DAQ systems have an energy threshold that is low enough to observe events similar to GRB 090510 and GRB 090902b with the characteristics observed by Fermi LAT. HAWC will provide information about the high-energy spectra of GRBs which in turn could help to understanding about e-pair attenuation in GRB jets, extragalactic background light absorption, as well as establishing the highest energy to which GRBs accelerate particles.
- Published
- 2011
29. THE HIGH ALTITUDE GAMMA RAY OBSERVATORY, HAWC
- Author
-
M. M. González and HAWC Collaboration
- Subjects
gamma rays ,Acceleration of particles ,cosmic rays ,general ,Física, Astronomía y Matemáticas ,intrumentation ,detectors - Abstract
"The Volcano Sierra Negra in Puebla, Mexico was selected to host HAWC (High Altitude Water Cherenkov), a unique obervatory of wide field of view (2Pi sr) capable of observing the sky continously at energies from 0.5 TeV to 100 TeV. HAWC is an array of 300 large water tanks (7.3 m diameter × 5 m depth) at an altitude of 4100 m. a. s. l. Each tank is instrumented with three upward-looking photomultipliers tubes. The full array will be capable of observing the most energetic gamma rays from the most violent events in the universe. HAWC will be 15 times more sensitive than its predecesor, Milagro. We present HAWC, the scientific case and capabilities."
- Published
- 2011
30. The HAWC Gamma-Ray Observatory: Design, Calibration, and Operation
- Author
-
Hawc, Collaboration, Abeysekara, A. U., Alfaro, R., Alvarez, C., Álvarez, J. D., Arceo, R., Arteaga-Velázquez, J. C., Ayala Solares, H. A., Barber, A. S., Baughman, B. M., Bautista-Elivar, N., Belmont, E., Benzvi, S. Y., Berley, D., Bonilla Rosales, M., Braun, J., Caballero-Lopez, R. A., Caballero-Mora, K. S., Carramiñana, A., Castillo, M., Cotti, U., Cotzomi, J., Eduardo de la Fuente, León, C., Deyoung, T., Diaz Hernandez, R., Díaz-Vélez, J. C., Dingus, B. L., Duvernois, M. A., Ellsworth, R. W., Fernandez, A., Fiorino, D. W., Fraija, N., Galindo, A., Garfias, F., González, L. X., González, M. M., Goodman, J. A., Grabski, V., Gussert, M., Hampel-Arias, Z., Hui, C. M., Hüntemeyer, P., Imran, A., Iriarte, A., Karn, P., Kieda, D., Kunde, G. J., Lara, A., Lauer, R. J., Lee, W. H., Lennarz, D., León Vargas, H., Linares, E. C., Linnemann, J. T., Longo, M., Luna-Garcia, R., Marinelli, A., Martinez, H., Martinez, O., Martínez-Castro, J., Matthews, J. A. J., Miranda-Romagnoli, P., Moreno, E., Mostafá, M., Nava, J., Nellen, L., Newbold, M., Noriega-Papaqui, R., Oceguera-Becerra, T., Patricelli, B., Pelayo, R., Pérez-Pérez, E. G., Pretz, J., Rivière, C., Rosa-González, D., Salazar, H., Salesa, F., Sanchez, F. E., Sandoval, A., Santos, E., Schneider, M., Silich, S., Sinnis, G., Smith, A. J., Sparks, K., Springer, R. W., Taboada, I., Toale, P. A., Tollefson, K., Torres, I., Ukwatta, T. N., Villaseñor, L., Weisgarber, T., Westerhoff, S., Wisher, I. G., Wood, J., Yodh, G. B., Younk, P. W., Zaborov, D., Zepeda, A., and Zhou, H.
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,astro-ph.HE ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics::Atmospheric and Oceanic Physics ,astro-ph.IM - Abstract
The High-Altitude Water Cherenkov Gamma Ray Observatory (HAWC) is under construction 4100 meters above sea level at Sierra Negra, Mexico. We describe the design and cabling of the detector, the characterization of the photomultipliers, and the timing calibration system. We also outline a next-generation detector based on the water Cherenkov technique., Contributions to the 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, July 2013
31. All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV
- Author
-
Hawc, Collaboration, Alfaro, R., Alvarez, C., Arceo, R., Arteaga-Velázquez, J. C., Avila Rojas, D., Ayala Solares, H. A., Barber, A. S., Becerril, A., Belmont-Moreno, E., Benzvi, S. Y., Brisbois, C., Caballero-Mora, K. S., Capistrán, T., Carramiñana, A., Casanova, S., Castillo, M., Cotti, U., Cotzomi, J., Coutiño León, S., León, C., Eduardo de la Fuente, Diaz Hernandez, R., Dichiara, S., Dingus, B. L., Duvernois, M. A., Díaz-Vélez, J. C., Ellsworth, R. W., Enriquez-Rivera, O., Fiorino, D. W., Fleischhack, H., Fraija, N., García-González, J. A., González Muñoz, A., González, M. M., Goodman, J. A., Hampel-Arias, Z., Harding, J. P., Hernandez-Almada, A., Hinton, J., Hueyotl-Zahuantitla, F., Hui, C. M., Huntemeyer, P., Iriarte, A., Jardin-Blicq, A., Joshi, V., Kaufmann, S., Lara, A., Lauer, R. J., Lennarz, D., León Vargas, H., Linnemann, J. T., Longinotti, A. L., Raya, G. Luis, Luna-García, R., López-Cámara, D., López-Coto, R., Malone, K., Marinelli, S. S., Martinez, O., Martinez-Castellanos, I., Martínez-Castro, J., Martínez-Huerta, H., Matthews, J. A., Miranda-Romagnoli, P., Moreno, E., Mostafá, M., Nellen, L., Newbold, M., Nisa, M. U., Noriega-Papaqui, R., Pelayo, R., Pretz, J., Pérez-Pérez, E. G., Ren, Z., Rho, C. D., Rivière, C., Rosa-González, D., Rosenberg, M., Ruiz-Velasco, E., Salesa Greus, F., Sandoval, A., Schneider, M., Schoorlemmer, H., Sinnis, G., Smith, A. J., Springer, R. W., Surajbali, P., Taboada, I., Tibolla, O., Tollefson, K., Torres, I., Ukwatta, T. N., Villaseñor, L., Weisgarber, T., Westerhoff, S., Wood, J., Yapici, T., Zepeda, A., Zhou, H., and Álvarez, J. D.
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,HAWC - Abteilung Hinton ,Range (particle radiation) ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Gamma ray ,FOS: Physical sciences ,Cosmic ray ,Astrophysics ,01 natural sciences ,Power law ,Observatory ,0103 physical sciences ,Angular resolution ,Astrophysics - High Energy Astrophysical Phenomena ,010306 general physics ,Energy (signal processing) ,Cherenkov radiation - Abstract
We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground based air-shower array deployed on the slopes of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to gamma rays and cosmic rays at TeV energies. The data used in this work were taken from 234 days between June 2016 to February 2017. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. The measured all-particle spectrum is consistent with a broken power law with an index of $-2.49\pm0.01$ prior to a break at $(45.7\pm0.1$) TeV, followed by an index of $-2.71\pm0.01$. The spectrum also respresents a single measurement that spans the energy range between direct detection and ground based experiments. As a verification of the detector response, the energy scale and angular resolution are validated by observation of the cosmic ray Moon shadow's dependence on energy., Comment: 16 pages, 11 figures, 4 tables, submission to Physical Review D
32. Horizontal muon track identification with neural networks in HAWC
- Author
-
Ian Herzog, Lukas Nellen, Hao Zhou, Ramiro Torres Escobedo, Segev BenZvi, Nicola Omodei, Samridha Kunwar, Arturo Iriarte, Israel Martinez Castellanos, David Kieda, Ke Fang, Hannah Jhee, Josefa Becerra Gonzalez, Harm Schoorlemmer, Jesús Martínez-Castro, Michael Newbold, Francisco Salesa Greus, Fernando Garfias, J. A. Goodman, Joshua Wood, David Berley, Nissim Illich Fraija, Alison Peisker, Thomas Weisgarber, Andrew James Smith, Xiaojie Wang, Henrike Fleischhack, Rishi Babu, Kelly Malone, Jason Fan, Humberto Ibarguen Salazar, Rhiannon Turner, Chad Brisbois, Vikas Joshi, Kristi Engel, Dezhi Huang, Diego Garcia Aguilar, Vincent Marandon, Alberto Carramiñana, Brenda Dingus, Mehr Nisa, Raquel Diaz Hernandez, Ian James Watson, Vardan Baghmanyan, José Roberto Angeles Camacho, Daniel Omar Avila Rojas, Hawc, Miguel Mostafa, Dirk Lennarz, Jorge Luis Flores, Cederik León de León, Ibrahim Torres, Joe Lundeen, Gilgamesh Luis-Raya, Maria Magdalena González, Pedro Miranda-Romagnoli, Kirsten Tollefson, Eucario Gonzalo Pérez Pérez, Andrea Albert, Hugo Alberto Ayala Solares, Eduardo Moreno Barbosa, Roberto Noriega-Papaqui, Eduardo de la Fuente, Gwenael Giacinti, Filiberto Hueyotl-Zahuantitla, Juan Carlos Arteaga Velazquez, Guillermo García-Torales, Arun Babu Kollamparambil, Robert Ellsworth, Meghan Tanner, Gerd J. Kunde, Colas Rivière, Hermes Leon Vargas, Oscar Chaparro-Amaro, Umberto Cotti, Arnulfo Zepeda, Sabrina Casanova, Ruben Lopez-Coto, Brian Fick, Pooja Surajbali, Andrés Sandoval, Lorenzo Diaz, Laura Olivera-Nieto, Yunior Pérez Araujo, Anna Lia Longinotti, Gus Sinnis, Fernando Ureña-Mena, Ernesto Belmont-Moreno, Jim Hinton, María Catalina Espinoza Hernández, Jorge Antonio Morales Soto, Tomás Capistrán, Hazal Goksu, Gaurang Yodh, Sergio Hernández Cadena, Brian Humensky, Jorge Cotzomi, Anushka Udara Abeysekara, Michelle Hui, Elijah Willox, César Alvarez, Jose Luis García-Luna, Ignacio Taboada, José Serna-Franco, Ruben Alfaro, Karen S. Caballero Mora, Jason Lee, J. T. Linnemann, Daniel Rosa-Gonzalez, Michael Schneider, Luis Villaseñor, Felix Werner, Ahron S. Barber, Jose Andres Garcia-Gonzalez, John Matthews, Mora Durocher, Petra Hüntemeyer, Mateo Fernandez Alonso, Oscar Martinez, Wayne Robert Springer, Amid Nayerhoda, James Ryan, Binita Hona, Sara Coutiño de Leon, Alejandro Lara, Michael DuVernois, Juan de Dios Álvarez Romero, William H. Lee, Julie McEnery, Juan Carlos Díaz Vélez, Chang Dong Rho, Armelle Jardin-Blicq, J. Patrick Harding, Humberto Martínez Huerta, Edna Ruiz-Velasco, and HAWC Collaboration
- Subjects
HAWC - Abteilung Hinton ,Physics - Instrumentation and Detectors ,Muon ,Artificial neural network ,Computer science ,business.industry ,Track (disk drive) ,Computer Science::Neural and Evolutionary Computation ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Identification (information) ,Computer vision ,Artificial intelligence ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
Nowadays the implementation of artificial neural networks in high-energy physics has obtained excellent results on improving signal detection. In this work we propose to use neural networks (NNs) for event discrimination in HAWC. This observatory is a water Cherenkov gamma-ray detector that in recent years has implemented algorithms to identify horizontal muon tracks. However, these algorithms are not very efficient. In this work we describe the implementation of three NNs: two based on image classification and one based on object detection. Using these algorithms we obtain an increase in the number of identified tracks. The results of this study could be used in the future to improve the performance of the Earth-skimming technique for the indirect measurement of neutrinos with HAWC., Comment: 8 pages, 6 figures, Proceedings of the 37th International Cosmic Ray Conference (ICRC 2021)
- Published
- 2022
33. Validation of standardized data formats and tools for ground-level particle-based gamma-ray observatories
- Author
-
Albert, A., Alfaro, R., Arteaga-Velázquez, J., AyalaSolares, H., Babu, R., Belmont-Moreno, E., Brisbois, C., Caballero-Mora, K., Capistrán, T., Carramiñana, A., Casanova, S., Chaparro-Amaro, O., Cotti, U., Cotzomi, J., de León, S., De la Fuente, E., Hernandez, R., DuVernois, M., Durocher, M., Espinoza, C., Fan, K., Alonso, M., Fraija, N., García-González, J., Goksu, H., González, M., Goodman, J., Harding, J., Hinton, J., Huang, D., Hueyotl-Zahuantitla, F., Hüntemeyer, P., Jardin-Blicq, A., Joshi, V., Linnemann, J., Longinotti, A., Luis-Raya, G., Malone, K., Marandon, V., Martinez, O., Martínez-Castro, J., Matthews, J., Miranda-Romagnoli, P., Morales-Soto, J., Moreno, E., Mostafá, M., Nayerhoda, A., Nellen, L., Nisa, M., Noriega-Papaqui, R., Olivera Nieto, L., Pérez-Pérez, E., Rho, C., Rosa-González, D., Ruiz-Velasco, E., Salazar-Gallegos, D., Greus, F., Sandoval, A., Schoorlemmer, H., Serna-Franco, J., Smith, A., Son, Y., Springer, R., Tollefson, K., Torres, I., Torres-Escobedo, R., Turner, R., Ureña-Mena, F., Villaseñor, L., Wang, X., Watson, I., Willox, E., Zhou, H., de León, C., Zepeda, A., Donath, A., Funk, S., and HAWC Collaboration
- Subjects
HAWC - Abteilung Hinton ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,High Energy Physics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
Ground-based gamma-ray astronomy is still a rather young field of research, with strong historical connections to particle physics. This is why most observations are conducted by experiments with proprietary data and analysis software, as it is usual in the particle physics field. However in recent years, this paradigm has been slowly shifting towards the development and use of open-source data formats and tools, driven by upcoming observatories such as the Cherenkov Telescope Array (CTA). In this context, a community-driven, shared data format (the gamma-astro-data-format or GADF) and analysis tools such as Gammapy and ctools have been developed. So far these efforts have been led by the IACT community, leaving out other types of ground-based gamma-ray instruments.We aim to show that the data from ground particle arrays, such as the High-Altitude Water Cherenkov (HAWC) observatory, is also compatible with the GADF and can thus be fully analysed using the related tools, in this case Gammapy. We reproduce several published HAWC results using Gammapy and data products compliant with GADF standard. We also illustrate the capabilities of the shared format and tools by producing a joint fit of the Crab spectrum including data from six different gamma-ray experiments. We find excellent agreement with the reference results, a powerful check of both the published results and the tools involved. The data from particle detector arrays such as the HAWC observatory can be adapted to the GADF and thus analysed with Gammapy. A common data format and shared analysis tools allow multi-instrument joint analysis and effective data sharing. Given the complementary nature of pointing and wide-field instruments, this synergy will be distinctly beneficial for the joint scientific exploitation of future observatories such as the Southern Wide-field Gamma-ray Observatory and CTA., Accepted by A&A
- Published
- 2022
34. The gamma-ray emission from 3HWC J1928+178
- Author
-
Jardin-Blicq, Armelle and on behalf of the HAWC Collaboration
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,HAWC - Abteilung Hinton ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics::Galaxy Astrophysics - Abstract
The gamma-ray source 3HWC J1928+178, discovered by HAWC, is coincident with the 82 kyr pulsar PSR J1928+1746, located 4 kpc away. It has not been reported by any Imaging atmospheric Cherenkov Telescope (IACT), until the recent detection of emission from this region by H.E.S.S., using an analysis adapted to extended sources. No counterpart in GeV gamma-rays from Fermi-LAT data or in X-ray has been reported so far. In this contribution, I give the multiwavelength context of the region surrounding 3HWC J1928+178 and present a multi-component model derived using the Multi-Mission Maximum Likelihood framework (3ML). I explore the possibility to model the gamma-ray emission of 3HWC J1928+178 by an extended source with continuous diffuse emission. Together with the age of the pulsar and its extended nature, it may indicate a transition from a pulsar wind nebulae to a halo, where the electrons have started to cool and diffuse away from the source., Comment: Submitted at the 37th International Cosmic Ray conference (ICRC 2021) under the reference PoS(ICRC2021)821
- Published
- 2021
35. HAWC J2227+610 and its association with G106.3+2.7, a new potential Galactic PeVatron
- Author
-
E. Moreno, P. Hüntemeyer, R. Torres-Escobedo, Armelle Jardin-Blicq, R. Noriega-Papaqui, J. T. Linnemann, E. G. Pérez-Pérez, Karen S. Caballero-Mora, J. A. Goodman, J. R. Angeles Camacho, K. Tollefson, Catalina Espinoza, H. León Vargas, H. A. Ayala Solares, J. A. Morales-Soto, Segev BenZvi, A. Galván-Gámez, Luis Villaseñor, Sabrina Casanova, V. Joshi, K. Malone, K. P. Arunbabu, Kwok Lung Fan, D. Garcia, S. Hernandez, U. Cotti, Arnulfo Zepeda, E. De la Fuente, S. S. Marinelli, D. Avila Rojas, E. Belmont-Moreno, Mehr Nisa, Nicola Omodei, H. Schoorlemmer, Andrea Albert, J. P. Harding, F. Garfias, M. Newbold, A. Iriarte, J. D. Álvarez, E. Tabachnick, P. Surajbali, Meghan Tanner, A. J. Smith, B. Hona, C. De León, M. Fernández Alonso, T. Capistrán, P. Miranda-Romagnoli, A. Sandoval, G. Luis-Raya, R. W. Ellsworth, Michael Schneider, Jose Andres Garcia-Gonzalez, E. Ruiz-Velasco, S. Coutiño de León, C. Brisbois, M. Mostafá, Y. Pérez Araujo, J. C. Díaz-Vélez, R. W. Springer, Daniel Rosa-Gonzalez, Amid Nayerhoda, T. Weisgarber, Brenda Dingus, Maria Magdalena González, Nissim Fraija, G. Sinnis, Ke Fang, H. Salazar, Lukas Nellen, Hongyan Zhou, J.C. Arteaga-Velázquez, Michael DuVernois, A. Carramiñana, I. Torres, Gwenael Giacinti, F. Ureña-Mena, Filiberto Hueyotl-Zahuantitla, J. Serna Franco, I. Martinez-Castellanos, C. Alvarez, K. Engel, Ruben Alfaro, C. D. Rho, F. Salesa Greus, A. L. Longinotti, W. H. Lee, A. Peisker, L. Diaz-Cruz, D. Huang, J. Cotzomi, J. Martínez-Castro, O. Tibolla, Henrike Fleischhack, J. Hinton, J. Lundeen, Vardan Baghmanyan, John Matthews, Oscar Martinez, and HAWC Collaboration
- Subjects
HAWC - Abteilung Hinton ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Hydrogen compounds ,010504 meteorology & atmospheric sciences ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Lower limit ,Galaxy ,Space and Planetary Science ,Observatory ,0103 physical sciences ,Supernova remnant ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences - Abstract
We present the detection of VHE gamma-ray emission above 100 TeV from HAWC J2227+610 with the HAWC observatory. Combining our observations with previously published results by VERITAS, we interpret the gamma-ray emission from HAWC J2227+610 as emission from protons with a lower limit in their cutoff energy of 800 TeV. The most likely source of the protons is the associated supernova remnant G106.3+2.7, making it a good candidate for a Galactic PeVatron. However, a purely leptonic origin of the observed emission cannot be excluded at this time., Accepted for publication by ApJL
- Published
- 2020
36. Multiple Galactic Sources with Emission Above 56 TeV Detected by HAWC
- Author
-
J. C. Arteaga-Velázquez, Karen S. Caballero-Mora, S. Hernandez, A. Carraminana, Maria Magdalena González, Z. Ren, Filiberto Hueyotl-Zahuantitla, Dezhi Huang, Catalina Espinoza, J. Pretz, Joe Lundeen, Miguel Mostafa, Gilgamesh Luis-Raya, John Matthews, Jesús Martínez-Castro, R. W. Ellsworth, H. A. Ayala Solares, J. A. Morales-Soto, Tomás Capistrán, S. S. Marinelli, C. Brisbois, Haocheng Zhang, V. Joshi, Luis Villaseñor, Ruben Alfaro, C. Rivière, R. W. Springer, Ibrahim Torres, Anushka Udara Abeysekara, Fernando Garfias, Michael Newbold, Daniel Rosa-Gonzalez, E. G. Pérez-Pérez, A. Nayerhoda, Thomas Weisgarber, A. Galván-Gámez, S. Coutiño de León, E. Ruiz-Velasco, S. Kaufmann, Hao Zhou, Segev BenZvi, J. A. Goodman, Alejandro Lara, Chang Dong Rho, Alison Peisker, Pedro Miranda-Romagnoli, H. León Vargas, E. Moreno, Kristi Engel, Umberto Cotti, Ernesto Belmont-Moreno, K. P. Arunbabu, David Kieda, Jim Hinton, J C Díaz-Vélez, Brenda Dingus, R. López-Coto, Andrea Albert, Henrike Fleischhack, Sabrina Casanova, A. Sandoval, Jorge Cotzomi, R. Torres-Escobedo, Arturo Iriarte, Anna Lia Longinotti, Kelly Malone, Meghan Tanner, Michael Schneider, Harm Schoorlemmer, E. Tabachnick, Nissim Illich Fraija, R. Noriega-Papaqui, M. U. Nisa, O. Tibolla, J. T. Linnemann, William H. Lee, D. Garcia, J. P. Harding, Binita Hona, O. Martinez, I. Martinez-Castellanos, K. Tollefson, Pooja Surajbali, Gus Sinnis, J. Wood, J. R. Angeles Camacho, T. Yapici, H. Martínez-Huerta, Jose Andres Garcia-Gonzalez, Petra Hüntemeyer, E. De la Fuente, D. Avila Rojas, A. J. Smith, L. Nellen, V. Baghmanyan, C. De León, Armelle Jardin-Blicq, Michael DuVernois, F. Salesa Greus, M. J. F. Rosenberg, Simone Dichiara, and HAWC Collaboration
- Subjects
Physics ,HAWC - Abteilung Hinton ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::High Energy Astrophysical Phenomena ,Gamma ray ,Astrophysics::Instrumentation and Methods for Astrophysics ,General Physics and Astronomy ,Flux ,Astronomy ,FOS: Physical sciences ,ASTROFÍSICA ,Effects of high altitude on humans ,01 natural sciences ,Spectral line ,Observatory ,0103 physical sciences ,010306 general physics ,Astrophysics - High Energy Astrophysical Phenomena ,Cherenkov radiation - Abstract
We present the first catalog of gamma-ray sources emitting above 56 and 100 TeV with data from the High Altitude Water Cherenkov (HAWC) Observatory, a wide field-of-view observatory capable of detecting gamma rays up to a few hundred TeV. Nine sources are observed above 56 TeV, all of which are likely Galactic in origin. Three sources continue emitting past 100 TeV, making this the highest-energy gamma-ray source catalog to date. We report the integral flux of each of these objects. We also report spectra for three highest-energy sources and discuss the possibility that they are PeVatrons., Accepted by Physical Review Letters
- Published
- 2019
37. Air shower reconstruction using HAWC and the Outrigger array
- Author
-
H. Schoorlemmer, V. Joshi, and for the HAWC Collaboration
- Subjects
HAWC - Abteilung Hinton ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Monte Carlo method ,Outrigger ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Particle detector ,Sparse array ,Air shower ,Observatory ,Environmental science ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Cherenkov radiation ,Remote sensing - Abstract
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory detects cosmic- and gamma-ray initiated air showers in the TeV energy range using 300 water Cherenkov detectors (WCDs). To improve its sensitivity at the highest energies, HAWC has been upgraded with a sparse array of 345 small WCDs (outrigger array) around the HAWC main array. The outrigger array increases the instrumented area of HAWC by a factor of 4 and has started taking data since August 2018. A new gamma-ray reconstruction method has been developed to improve the reconstruction of the air showers which combines the data of mixed type particle detector arrays. In this contribution, we will show the first results of the combined air shower reconstruction of HAWC and its outrigger array using Monte Carlo simulations and the first combined experimental data set., Comment: Presented at the 36th International Cosmic Ray Conference (ICRC 2019)
- Published
- 2019
- Full Text
- View/download PDF
38. First HAWC Observations of the Sun Constrain Steady TeV Gamma-Ray Emission
- Author
-
E. Moreno, P. Surajbali, Hao Zhou, Annika H. G. Peter, J. Wood, J. P. Harding, O. Enríquez-Rivera, Fernando Garfias, Z. Ren, A. Iriarte, J. C. Arteaga-Velázquez, F. Salesa Greus, J. Martínez-Castro, E. De la Fuente, Joe Lundeen, D. Avila Rojas, Harm Schoorlemmer, A. Albert, S. Westerhoff, M. Seglar Arroyo, Z. Hampel-Arias, Jose Andres Garcia-Gonzalez, M. J. F. Rosenberg, T. Weisgarber, E. G. Pérez-Pérez, S. Dichiara, R. W. Springer, Edna Ruiz-Velasco, Rebecca K. Leane, I. Torres, Petra Hüntemeyer, R. López-Coto, O. Martinez, M. Mostafá, T. Yapici, H. Salazar, Juan Carlos Diaz-Velez, B. Hona, S. Kaufmann, L. Nellen, I. Martinez-Castellanos, Cristobal M. Espinoza, Kenny C. Y. Ng, C. D. Rho, N. Fraija, M. M. González, T. Capistrán, Filiberto Hueyotl-Zahuantitla, E. Belmont-Moreno, A. Nayerhoda, John F. Beacom, Brenda Dingus, Michael Schneider, I. G. Wisher, S. Coutiño de León, Henrike Fleischhack, C. Alvarez, Segev BenZvi, J. Cotzomi, A. Carramiñana, Sabrina Casanova, O. Tibolla, S. S. Marinelli, G. Sinnis, A. Sandoval, T. Linden, Chad Brisbois, Michael DuVernois, V. Joshi, R. Arceo, P. Miranda-Romagnoli, M. Newbold, Karen S. Caballero-Mora, H. A. Ayala Solares, A. Jardin-Blicq, Kristi Engel, M. Castillo, H. León Vargas, Mehr Nisa, I. Taboada, Bei Zhou, K. Tollefson, C. De León, Jdr Alvarez, C. Rivière, A. Zepeda, Jennifer Pretz, Daniel Rosa-Gonzalez, R. Alfaro, A. J. Smith, R. Noriega-Papaqui, G. Luis-Raya, S. Hernandez, L. Villaseñor, J. A. Goodman, K. Malone, and HAWC Collaboration
- Subjects
Solar minimum ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Flux ,FOS: Physical sciences ,Cosmic ray ,Astrophysics ,7. Clean energy ,01 natural sciences ,Atmosphere ,High Energy Physics - Phenomenology (hep-ph) ,Observatory ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Cherenkov radiation ,Solar and Stellar Astrophysics (astro-ph.SR) ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,HAWC - Abteilung Hinton ,010308 nuclear & particles physics ,Gamma ray ,High Energy Physics - Phenomenology ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Steady gamma-ray emission up to at least 200 GeV has been detected from the solar disk in the Fermi-LAT data, with the brightest, hardest emission occurring during solar minimum. The likely cause is hadronic cosmic rays undergoing collisions in the Sun's atmosphere after being redirected from ingoing to outgoing in magnetic fields, though the exact mechanism is not understood. An important new test of the gamma-ray production mechanism will follow from observations at higher energies. Only the High Altitude Water Cherenkov (HAWC) Observatory has the required sensitivity to effectively probe the Sun in the TeV range. Using three years of HAWC data from November 2014 to December 2017, just prior to the solar minimum, we search for 1--100 TeV gamma rays from the solar disk. No evidence of a signal is observed, and we set strong upper limits on the flux at a few $10^{-12}$ TeV$^{-1}$ cm$^{-2}$ s$^{-1}$ at 1 TeV. Our limit, which is the most constraining result on TeV gamma rays from the Sun, is $\sim10\%$ of the theoretical maximum flux (based on a model where all incoming cosmic rays produce outgoing photons), which in turn is comparable to the Fermi-LAT data near 100 GeV. The prospects for a first TeV detection of the Sun by HAWC are especially high during solar minimum, which began in early 2018., Comment: 14 pages, 6 figures. See also companion paper 1808.05624. Accepted for publication in Physical Review D
- Published
- 2018
39. Multi-messenger Observations of a Binary Neutron Star Merger
- Author
-
Collaboration, LIGO Scientific, Collaboration, Virgo, Fermi, GBM, INTEGRAL, Collaboration, IceCube, Team, AstroSat Cadmium Zinc Telluride Imager, Collaboration, IPN, Collaboration, The Insight-Hxmt, Collaboration, ANTARES, Collaboration, The Swift, Team, AGILE, Team, The 1M2H, Collaboration, The Dark Energy Camera GW-EM, Collaboration, the DES, Collaboration, The DLT40, GRAWITA, TeAm, GRAvitational Wave Inaf, Collaboration, The Fermi Large Area Telescope, ATCA, Array, Australia Telescope Compact, ASKAP, Pathfinder, Australian SKA, Group, Las Cumbres Observatory, OzGrav, DWF, AST3, Collaborations, CAASTRO, Collaboration, The VINROUGE, Collaboration, MASTER, J-GEM, GROWTH, JAGWAR, Caltech-, NRAO, TTU-NRAO, Collaborations, NuSTAR, Pan-STARRS, Team, The MAXI, Consortium, TZAC, Collaboration, KU, Telescope, Nordic Optical, ePESSTO, GROND, University, Texas Tech, Group, SALT, TOROS, Collaboration, Transient Robotic Observatory of the South, Collaboration, The BOOTES, MWA, Array, Murchison Widefield, Collaboration, The CALET, Collaboration, IKI-GW Follow-up, Collaboration, H. E. S. S., Collaboration, LOFAR, LWA, Array, Long Wavelength, Collaboration, HAWC, Collaboration, The Pierre Auger, Collaboration, ALMA, Team, Euro VLBI, Collaboration, Pi of the Sky, University, The Chandra Team at McGill, DFN, Network, Desert Fireball, ATLAS, Survey, High Time Resolution Universe, RIMAS, RATIR, Africa/MeerKAT, SKA South, Van Eerten, Hendrik, Calloni, E., DE ROSA, Rosario, Garufi, F., De Laurentis, M., Di Girolamo, T., Milano, L., Barbato, F., Colalillo, R., Guarino, Fausto, Valore, L., Allocca, Annalisa, Fermi, Gbm, Integral, Icecube, Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, Ipn, Collaboration, The Insight-Hxmt Collaboration, Antares, Collaboration, The Swift Collaboration, Agile, Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Pathfinder, Las Cumbres Observatory Group, Ozgrav, Dwf, (Deeper, Wider, Faster, Program), Ast3, and CAASTRO Collaborations, The VINROUGE Collaboration, Master, Collaboration, J-GEM, Growth, Jagwar, Caltech-, Nrao, TTU-NRAO, and NuSTAR Collaborations, Pan-STARRS, The MAXI Team, Tzac, Consortium, Collaboration, Ku, Nordic Optical Telescope, Epessto, Grond, Texas Tech University, Salt, Group, TOROS: Transient Robotic Observatory of the South Collaboration, The BOOTES Collaboration, MWA: Murchison Widefield Array, The CALET Collaboration, IKI-GW Follow-up Collaboration, Collaboration, H. E. S. S., Lofar, Collaboration, LWA: Long Wavelength Array, Hawc, Collaboration, The Pierre Auger Collaboration, Alma, Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, Atlas, High Time Resolution Universe Survey, RIMAS and RATIR, and SKA South Africa/MeerKAT, and Pinto, Innocenzo
- Subjects
astro-ph.HE ,Astrophysics::High Energy Astrophysical Phenomena ,gr-qc ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim 1.7\,{\rm{s}}$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of ${40}_{-8}^{+8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $\,{M}_{\odot }$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim 40\,{\rm{Mpc}}$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim 9$ and $\sim 16$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.