1. Defective Expression of the Mitochondrial-tRNA Modifying Enzyme GTPBP3 Triggers AMPK-Mediated Adaptive Responses Involving Complex I Assembly Factors, Uncoupling Protein 2, and the Mitochondrial Pyruvate Carrier
- Author
-
Salvador Meseguer, Ana Martínez-Zamora, M.-Eugenia Armengod, Juan M. Esteve, Magda Villarroya, Carmen Aguado, Erwin Knecht, J. Antonio Enríquez, Ministerio de Economía y Competitividad (España), Generalitat Valenciana (España), and Instituto de Salud Carlos III
- Subjects
Monocarboxylic Acid Transporters ,FATTY-ACID OXIDATION ,CELL-SURVIVAL ,Mitochondrial translation ,Pyruvate transport ,Anion Transport Proteins ,lcsh:Medicine ,Oxidative phosphorylation ,Biology ,Mitochondrion ,AMP-Activated Protein Kinases ,ROS PRODUCTION ,Mitochondrial Membrane Transport Proteins ,Ion Channels ,Oxidative Phosphorylation ,Mitochondrial Proteins ,Adenosine Triphosphate ,H2O2 GENERATION ,GTP-Binding Proteins ,Escherichia coli ,Uncoupling protein ,Humans ,Glycolysis ,Uncoupling Protein 2 ,LACTIC-ACIDOSIS ,lcsh:Science ,Beta oxidation ,Multidisciplinary ,Electron Transport Complex I ,HYPERTROPHIC CARDIOMYOPATHY ,lcsh:R ,Fatty Acids ,PHYSIOLOGICALLY RELEVANT ,Ribonuclease, Pancreatic ,Mitochondria ,HEK293 Cells ,Biochemistry ,Gene Expression Regulation ,ESCHERICHIA-COLI ,GLUTAMINE OXIDATION ,RNA, Transfer, Lys ,lcsh:Q ,Calmodulin-Binding Proteins ,GTPBP3 ,RESPIRATORY-CHAIN DEFICIENCY ,Research Article - Abstract
GTPBP3 is an evolutionary conserved protein presumably involved in mitochondrial tRNA (mt-tRNA) modification. In humans, GTPBP3 mutations cause hypertrophic cardiomyopathy with lactic acidosis, and have been associated with a defect in mitochondrial translation, yet the pathomechanism remains unclear. Here we use a GTPBP3 stable-silencing model (shGTPBP3 cells) for a further characterization of the phenotype conferred by the GTPBP3 defect. We experimentally show for the first time that GTPBP3 depletion is associated with an mt-tRNA hypomodification status, as mt-tRNAs from shGTPBP3 cells were more sensitive to digestion by angiogenin than tRNAs from control cells. Despite the effect of stable silencing of GTPBP3 on global mitochondrial translation being rather mild, the steady-state levels and activity of Complex I, and cellular ATP levels were 50\% of those found in the controls. Notably, the ATPase activity of Complex V increased by about 40\% in GTPBP3 depleted cells suggesting that mitochondria consume ATP to maintain the membrane potential. Moreover, shGTPBP3 cells exhibited enhanced antioxidant capacity and a nearly 2-fold increase in the uncoupling protein UCP2 levels. Our data indicate that stable silencing of GTPBP3 triggers an AMPK-dependent retrograde signaling pathway that down-regulates the expression of the NDUFAF3 and NDUFAF4 Complex I assembly factors and the mitochondrial pyruvate carrier (MPC), while up-regulating the expression of UCP2. We also found that genes involved in glycolysis and oxidation of fatty acids are up-regulated. These data are compatible with a model in which high UCP2 levels, together with a reduction in pyruvate transport due to the down-regulation of MPC, promote a shift from pyruvate to fatty acid oxidation, and to an uncoupling of glycolysis and oxidative phosphorylation. These metabolic alterations, and the low ATP levels, may negatively affect heart function. This work has been supported by grants from the Spanish Ministry of Economy and Competitiveness (http://www.mineco.gob.es/portal/site/mineco/) (grant numbers BFU2010-19737 and BFU2014-58673-P to M.-E. A., BFU2011-22630 and SAF2014-54604-C3-2-R to E.K.) and the Generalitat Valenciana (http://www.gva.es/va/inicio/presentacion) (grant numbers ACOMP/2012/065 to M.-E. A., and PROMETEO/2012/061 to M.-E. A. and E.K.), and a PhD fellowship from the Instituto de Salud Carlos III (http://www.isciii.es/) to A.M.-Z. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Sí
- Published
- 2015