1. Image-Based Detection of Plant Diseases: From Classical Machine Learning to Deep Learning Journey
- Author
-
Khan, Rehan Ullah, Khan, Khalil, Albattah, Waleed, and Qamar, Ali Mustafa
- Subjects
Article Subject - Abstract
Plant disease automation in agriculture science is the primary concern for every country, as the food demand is increasing at a fast rate due to an increase in population. Moreover, the increased use of technology today has increased the efficacy and accuracy of detecting diseases in plants and animals. The detection process marks the beginning of a series of activities to fight the diseases and reduce their spread. Some diseases are also transmitted between animals and human beings, making it hard to fight them. For many years, scientists have researched how to deal with the common diseases that affect humans and plants. However, there are still many parts of the detection and discovery process that have not been completed. The technology used in medical procedures has not been adequate to detect all diseases on time, and that is why some diseases turn out to become pandemics because they are hard to detect on time. Our focus is to clarify the details about the diseases and how to detect them promptly with artificial intelligence. We discuss the use of machine learning and deep learning to detect diseases in plants automatically. Our study also focuses on how machine learning methods have been moved from conventional machine learning to deep learning in the last five years. Furthermore, different data sets related to plant diseases are discussed in detail. The challenges and problems associated with the existing systems are also presented.
- Published
- 2021
- Full Text
- View/download PDF