1. A novel strategy to prepare LDH networks loaded carbon structure by C-MEMS techniques for glucose detection
- Author
-
Yunying Liu, Wang Zhengde, Hui Yan, Ma Litong, Guo Guibao, Bai Yuchen, Wang Xiaoxia, Ying-Quan Zou, and Bo Hai
- Subjects
Microelectromechanical systems ,Nanocomposite ,Fabrication ,Materials science ,Nanostructure ,chemistry.chemical_element ,Nanotechnology ,02 engineering and technology ,General Chemistry ,Photoresist ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,chemistry ,0210 nano-technology ,Carbon ,Pyrolysis ,Lithography - Abstract
NiAl-layered double hydroxide (NiAl-LDH) networks loaded carbon microcylinder (CMC) hybrid was synthesized for the first time using typical carbon based microelectromechanical systems (C-MEMS) techniques combined with in situ growth progress. The incorporation of NiAl-LDH on C-MEMS structures via a simple pyrolysis of modified photoresist was investigated. With proper control of parameters in lithography and hydrothermal processes, the NiAl-LDH/CMC composites with suitable morphology were fabricated. When the composites applied as new catalytic material for glucose detection, this simple sensor showed satisfying electrocatalytic properties towards glucose oxidation owing to its unique structure and excellent electric conductivity. It is also worth pointing out that this novel fabrication process can equip carbon microfeatures with various nanostructures, and have wide potential applications in scaling up carbon based nanocomposites.
- Published
- 2017