29 results on '"Raymond Newell"'
Search Results
2. Space-based quantum networks are an essential component of future architecture for distributed quantum computers and quantum-enhanced secure communication
- Author
-
Kristina Meier, Raymond Newell, and Nicholas Dallmann
- Published
- 2023
3. Biological quantum imaging with non-degenerate photon pairs
- Author
-
Duncan Ryan, James H. Werner, Kristina Meier, David Thompson, Peter Goodwin, Rebecca Holmes, Raymond Newell, Demosthenes Morales, David Hanson, Scott Twary, and Kati Seitz
- Published
- 2023
4. Quantum ghost imaging for non-destructive plant imaging using highly non-degenerate spontaneous parametric downconversion
- Author
-
Kristina Meier, Duncan Ryan, David Thompson, Raymond Newell, Rebecca Sandoval, and James H. Werner
- Published
- 2023
5. Detection of hydration spectral signatures with IRS/SuperCam, Perseverance rover: instrument performance
- Author
-
Clément Royer, Thierry Fouchet, Franck Montmessin, Francois Poulet, Olivier Forni, Jeffrey Johnson, Olivier Gasnault, Lucia Mandon, Cathy Quantin-Nataf, Pierre Beck, Ann Ollila, Cédric Pilorget, Pernelle Bernardi, Jean-Michel Reess, Raymond Newell, Sylvestre Maurice, and Roger Wiens
- Published
- 2022
6. Quantum-enabled ghost imaging for non-invasive imaging of plants
- Author
-
Duncan P. Ryan, Kristina Meier, David Thompson, Raymond Newell, and James H. Werner
- Subjects
Biophysics - Published
- 2023
7. The flight radiometric calibration of IRS/SuperCam onboard Perseverance: campaign follow up and performance assessment
- Author
-
Clement Royer, Thierry Fouchet, Franck Montmessin, François Poulet, Olivier Forni, Jeffrey Johnson, Olivier Gasnault, Cathy Quantin-Nataf, Pierre Beck, Ann Ollila, Lucia Mandon, Cedric Pilorget, Pernelle Bernardi, Jean-Michel Reess, Raymond Newell, Sylvestre Maurice, Roger Wiens, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Pôle Planétologie du LESIA, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Los Alamos National Laboratory (LANL), Centre National de la Recherche Scientifique (CNRS), and Europlanet
- Subjects
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
The Perseverance rover (Mars 2020 mission, NASA) is exploring the mineral diversity within Jezero, the host crater of a paleolake, and is searching for potential biosignatures and past habitability evidence. Amongst its science payload, the SuperCam instrument (LANL/USA and a consortium of French laboratories) plays a central role in the Mars habitability investigation by providing rapid, synergistic, fine-scale mineralogy, chemistry, and color imaging [1]. In particular, it carries the first near-infrared spectrometer, IRS, to be operated on the Martian surface. IRS is a miniaturized point spectrometer (~1.15 mrad field of view) located in the SuperCam’s mast unit. Its spectral range (1.3 – 2.6 µm range) covers major silicate and hydrated mineral absorption features [2]. The instrument has been fully calibrated on ground before its launch [3] but flight measurements are necessary to check and refine its instrumental response after the cruise, entry, descent and landing. During the first 90 sols, observations of the SuperCam Calibration Targets (SCCT) were routinely performed in alternance with scientific targets.An opportunistic observation of the Mastcam-Z calibration target has also been acquired. The IRS sensitivity, measured on the White SCCT, appears to be generally compliant with the ground measurements, except at short wavelengths (Fig. 1). Flight calibrated measurements of the other SCCTs are compliant with their lab reference (Fig. 2) within 5 to 20 % for the Red and Cyan, but the evaluation of the absolute reflectance of the Black SCCT is far from expected, perhaps due to the ambient light misestimation. The calibration also consists in the removal of instrumental and environmental parasitic effects: CO 2 absorptions caused by the path of light through the Martian atmosphere are removed by dividing by a simulated spectrum of the gas; an EMI/EMC effect causing “glitches” in the AOTF’s RF power supply as well as in acquired data is mitigated by a specific detection algorithm; and readout spikes are eliminated by a statistical algorithm as well. Finally, datasets are cosmetically cleaned using higher level refinement algorithms (wavelets filtering and polynomial smoothing of the dark) to enhance band depth contrast without introducing significant biases. The remaining uncertainty on reflectance absolute level is mainly attributed to the error on the geometry of the illumination which requires a better modeling of local opography and the atmosphere diffusion. Some low frequency residuals are also miscalibrated by the current pipeline and still under investigation (e.g., RF power stability, thermal effects). Notwithstanding these calibration uncertainties, the instrument signal to noise ratio (SNR) is high enough, and the relative (i.e., spectral channel to spectral channel) calibration is precise enough to be sensitive to faint spectral features (down to a few percent band depth) even if few parts of the spectral range show very faint but high frequency effects. Thus we will present the assessment of the radiometric in-flight performance of the instrument and the evaluation of the detection threshold for specific spectral signatures. Figure 1: Radiometric instrument transfer function derived from ground calibration (blue) and flight measurements (orange), showing their divergence at short wavelength. Figure 2: Color SCCTs measurement performed on Sol 77. The lighter lines correspond to the lab reference of these calibration targets. References[1] Wiens, R.C. et al., 2017. Spectroscopy; [2] Fouchet et al., 2015, 46 th LPSC; [3] Royer et al., 2020, RScI
- Published
- 2021
8. Optical design and performance of the SuperCam instrument for the Perseverance rover
- Author
-
S. Robinson, L. Parès, Bruno Dubois, Olivier Gasnault, Glenn E. Peterson, Jean-Michel Reess, P. Bernardi, T. Nelson, Ivair Contijo, A. Reyes-Newell, Raymond Newell, Vishnu Schridar, and Chip Legett
- Subjects
Impact crater ,Martian surface ,Calibration ,Environmental science ,Context (language use) ,Laser-induced breakdown spectroscopy ,Mars Exploration Program ,Curiosity rover ,National laboratory ,Remote sensing - Abstract
On the 30th of July 2020, NASA launched the Mars2020 mission. This mission, very similar to Mars Science Laboratory, consists in landing the Perseverance rover on the Martian surface in order to characterize the geology and history of Jezero Crater landing site, investigate Mars habitability, seek potential bio-signatures, cache samples for a future return to Earth, and demonstrate in-situ production of oxygen needed for human exploration. The SuperCam instrument, an improved version of the ChemCam instrument on Curiosity rover, implements a remote micro-scale characterization of the mineralogy and elemental chemistry of the Mars surface, along with the search for extant organic materials. In addition to the elemental characterization offered by Laser Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence Spectroscopy (TRR/L) and visible-infrared spectroscopy (VISIR) have been added for a complete mineralogical characterization of the samples. LIBS and TRR/L techniques will be exercised from the Rover calibration targets (1.5 m range) up to 7 m, whereas VISIR spectroscopy can be used on targets up to the horizon. A context color imagery capability is also implemented to place the analyzed samples in their geological context. A microphone allows recording aeolian phenomena, rover noises and the shock waves produced by the laser blasts on target up to 4 meters. SuperCam consists of three units: the Body Unit built by the Los Alamos National Laboratory in the US, the Mast Unit built by a French consortium of 6 laboratories and CNES, and the Calibration Target Unit led by the University of Valladolid in Spain.
- Published
- 2021
9. Frontiers in Science: Protecting the power grid with physics [Slides]
- Author
-
Raymond Newell
- Subjects
business.industry ,Electrical engineering ,Power grid ,business - Published
- 2021
10. Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation
- Author
-
Rohit Bhartia, Luther W. Beegle, Lauren DeFlores, William Abbey, Joseph Razzell Hollis, Kyle Uckert, Brian Monacelli, Kenneth S. Edgett, Megan R. Kennedy, Margarite Sylvia, David Aldrich, Mark Anderson, Sanford A. Asher, Zachary Bailey, Kerry Boyd, Aaron S. Burton, Michael Caffrey, Michael J. Calaway, Robert Calvet, Bruce Cameron, Michael A. Caplinger, Brandi L. Carrier, Nataly Chen, Amy Chen, Matthew J. Clark, Samuel Clegg, Pamela G. Conrad, Moogega Cooper, Kristine N. Davis, Bethany Ehlmann, Linda Facto, Marc D. Fries, Dan H. Garrison, Denine Gasway, F. Tony Ghaemi, Trevor G. Graff, Kevin P. Hand, Cathleen Harris, Jeffrey D. Hein, Nicholas Heinz, Harrison Herzog, Eric Hochberg, Andrew Houck, William F. Hug, Elsa H. Jensen, Linda C. Kah, John Kennedy, Robert Krylo, Johnathan Lam, Mark Lindeman, Justin McGlown, John Michel, Ed Miller, Zachary Mills, Michelle E. Minitti, Fai Mok, James Moore, Kenneth H. Nealson, Anthony Nelson, Raymond Newell, Brian E. Nixon, Daniel A. Nordman, Danielle Nuding, Sonny Orellana, Michael Pauken, Glen Peterson, Randy Pollock, Heather Quinn, Claire Quinto, Michael A. Ravine, Ray D. Reid, Joe Riendeau, Amy J. Ross, Joshua Sackos, Jacob A. Schaffner, Mark Schwochert, Molly O Shelton, Rufus Simon, Caroline L. Smith, Pablo Sobron, Kimberly Steadman, Andrew Steele, Dave Thiessen, Vinh D. Tran, Tony Tsai, Michael Tuite, Eric Tung, Rami Wehbe, Rachel Weinberg, Ryan H. Weiner, Roger C. Wiens, Kenneth Williford, Chris Wollonciej, Yen-Hung Wu, R. Aileen Yingst, and Jason Zan
- Subjects
Materials science ,Spectrometer ,business.industry ,Astronomy and Astrophysics ,Context (language use) ,Mars Exploration Program ,Mars Hand Lens Imager ,Laser ,law.invention ,symbols.namesake ,Optics ,Space and Planetary Science ,law ,symbols ,Spectroscopy ,Raman spectroscopy ,business ,Spectrograph - Abstract
The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) is a robotic arm-mounted instrument on NASA’s Perseverance rover. SHERLOC has two primary boresights. The Spectroscopy boresight generates spatially resolved chemical maps using fluorescence and Raman spectroscopy coupled to microscopic images (10.1 μm/pixel). The second boresight is a Wide Angle Topographic Sensor for Operations and eNgineering (WATSON); a copy of the Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) that obtains color images from microscopic scales (∼13 μm/pixel) to infinity. SHERLOC Spectroscopy focuses a 40 μs pulsed deep UV neon-copper laser (248.6 nm), to a ∼100 μm spot on a target at a working distance of ∼48 mm. Fluorescence emissions from organics, and Raman scattered photons from organics and minerals, are spectrally resolved with a single diffractive grating spectrograph with a spectral range of 250 to ∼370 nm. Because the fluorescence and Raman regions are naturally separated with deep UV excitation (−1 (250 to 273 nm) and the fluorescence region (274 to ∼370 nm) are acquired simultaneously without time gating or additional mechanisms. SHERLOC science begins by using an Autofocus Context Imager (ACI) to obtain target focus and acquire 10.1 μm/pixel greyscale images. Chemical maps of organic and mineral signatures are acquired by the orchestration of an internal scanning mirror that moves the focused laser spot across discrete points on the target surface where spectra are captured on the spectrometer detector. ACI images and chemical maps (< 100 μm/mapping pixel) will enable the first Mars in situ view of the spatial distribution and interaction between organics, minerals, and chemicals important to the assessment of potential biogenicity (containing CHNOPS). Single robotic arm placement chemical maps can cover areas up to 7x7 mm in area and, with the < 10 min acquisition time per map, larger mosaics are possible with arm movements. This microscopic view of the organic geochemistry of a target at the Perseverance field site, when combined with the other instruments, such as Mastcam-Z, PIXL, and SuperCam, will enable unprecedented analysis of geological materials for both scientific research and determination of which samples to collect and cache for Mars sample return.
- Published
- 2021
11. OrganiCam: a lightweight time-resolved laser-induced luminescence imager and Raman spectrometer for planetary organic material characterization
- Author
-
Seychelles Voit, Logan Ott, Heather Quinn, Magdalena Dale, Samantha Adikari, Patrick J. Gasda, Steven P. Love, Shiv K. Sharma, Benigno Sandoval, Raymond Newell, Charles G. Peterson, Tayro E. Acosta-Maeda, Anupam K. Misra, Sylvestre Maurice, A. Reyes-Newell, Kumkum Ganguly, Roger C. Wiens, and Samuel M. Clegg
- Subjects
Materials science ,Spectrometer ,business.industry ,Brassboard ,Detector ,Atomic and Molecular Physics, and Optics ,Characterization (materials science) ,symbols.namesake ,Optics ,symbols ,Electrical and Electronic Engineering ,Luminescence ,Raman spectroscopy ,business ,Engineering (miscellaneous) ,Diffuser (optics) ,Laser beams - Abstract
OrganiCam is a laser-induced luminescence imager and spectrometer designed for standoff organic and biosignature detection on planetary bodies. OrganiCam uses a diffused laser beam (12° cone) to cover a large area at several meters distance and records luminescence on half of its intensified detector. The diffuser can be removed to record Raman and fluorescence spectra from a small spot from 2 m standoff distance. OrganiCam’s small size and light weight makes it ideal for surveying organics on planetary surfaces. We have designed and built a brassboard version of the OrganiCam instrument and performed initial tests of the system.
- Published
- 2021
12. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description
- Author
-
I. Torre-Fdez, V. Gharakanian, E. Cordoba, Jérôme Parisot, R. Perez, Amaury Fau, Peter Willis, Ruth A. Anderson, Pablo Sobron, K. W. Wong, A. Debus, Julien Mekki, Noureddine Melikechi, K. Mathieu, S. Gauffre, M. Toplis, Jesús Martínez-Frías, Alexandre Cadu, Francois Poulet, B. Quertier, Horton E. Newsom, H. Seran, C. Quantin-Nataf, W. D’anna, Jens Frydenvang, Frédéric Chapron, Pierre Beck, Jean-François Mariscal, B. Chide, Y. André, Y. Michel, G. Orttner, N. Toulemont, A. Dufour, Briana Lucero, Olivier Gilard, Marion Bonafous, D. Pheav, Q.-M. Lee, D. Standarovsky, Franck Montmessin, R. Gonzalez, S. Le Mouélic, Cedric Virmontois, L. Roucayrol, I. Gontijo, M. Deleuze, L. Parès, L. Oudda, Y. Micheau, F. Manni, Bruno Dubois, Bruno Bousquet, G. de los Santos, D. M. Delapp, Guillermo Lopez-Reyes, L. Picot, Clément Royer, E. Clave, Richard Leveille, Erwin Dehouck, Gaetan Lacombe, J. Javier Laserna, Olivier Beyssac, P. Romano, Y. Daydou, Scott M. McLennan, John Michel, V. Sridhar, Driss Kouach, Gabriel Pont, M. Dupieux, Michel Gauthier, Jean-Michel Reess, J. Moros, J.-C. Dameury, T. Fouchet, Ann Ollila, Sophie Jacquinod, P. Y. Meslin, M. Egan, Juan Manuel Madariaga, Karim Benzerara, G. Hervet, Gilles Montagnac, Woodward W. Fischer, Olivier Gasnault, T. Nelson, Stanley M. Angel, Lauren DeFlores, Violaine Sautter, Marco Veneranda, C. Leyrat, Olivier Humeau, Y. Morizet, Jose Antonio Manrique, M. Sodki, P. Pilleri, C. Velasco, Naomi Murdoch, M. J. Schoppers, S. A. Storms, Sylvestre Maurice, Benigno Sandoval, Cedric Pilorget, N. Striebig, S. Robinson, V. Mousset, David Mimoun, Morten Madsen, M. Heim, A. Doressoundiram, Christophe Montaron, Eric Lewin, Patrick Pinet, C. Donny, Susanne Schröder, Agnès Cousin, Sadok Abbaki, John P. Grotzinger, Claude Collin, Xavier Jacob, Jeffrey R. Johnson, Cécile Fabre, K. McCabe, C. Legett, J. P. Berthias, Shiv K. Sharma, Timothy H. McConnochie, A. Sournac, Ralph D. Lorenz, M. Viso, Yann Parot, N. Mangold, W. Rapin, Jérémie Lasue, Gorka Arana, Joan Ervin, E. Le Comte, N. Nguyen Tuong, P. Cais, Olivier Forni, D. Rambaud, T. Battault, D. Venhaus, Anupam K. Misra, K. Clark, M. Tatat, Laurent Lapauw, P. Bernardi, Roger C. Wiens, Samuel M. Clegg, Nina Lanza, Sylvain Bernard, Soren N. Madsen, Kepa Castro, M. Boutillier, Raymond Newell, D. Granena, Y. Hello, Fernando Rull, M. Ruellan, R. Mathon, Edward A. Cloutis, Gilles Dromart, L. Le Deit, Rafik Hassen-Khodja, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES), Universidad de Valladolid [Valladolid] (UVa), Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), US Geological Survey [Flagstaff], United States Geological Survey [Reston] (USGS), University of South Carolina [Columbia], Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), University of Winnipeg, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, University of Hawai‘i [Mānoa] (UHM), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), University of Copenhagen = Københavns Universitet (UCPH), Institut de mécanique des fluides de Toulouse (IMFT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), PLANETO - LATMOS, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidad de Málaga [Málaga] = University of Málaga [Málaga], Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), McGill University = Université McGill [Montréal, Canada], Institut des Sciences de la Terre (ISTerre), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), University of Maryland [College Park], University of Maryland System, Stony Brook University [SUNY] (SBU), State University of New York (SUNY), University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS), Laboratoire de Planétologie et Géodynamique - Angers (LPG-ANGERS), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), The University of New Mexico [Albuquerque], Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Institut für Optische Sensorsysteme, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), SETI Institute, Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), University of Copenhagen = Københavns Universitet (KU), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées
- Subjects
Rocks ,010504 meteorology & atmospheric sciences ,Computer science ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Mars ,Context (language use) ,Perseverance ,Imaging on Mars ,Mars 2020 Perseverance rover ,01 natural sciences ,SuperCam Instrument ,Unit (housing) ,Mast (sailing) ,Jezero crater ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,imaging on Mars ,Microphone on Mars ,0103 physical sciences ,Calibration ,Rover ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,infrared spectroscopy ,Raman ,010303 astronomy & astrophysics ,Infrared spectroscopy ,0105 earth and related environmental sciences ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,M2020 ,LIBS ,Payload ,Suite ,Mars2020 ,Astronomy and Astrophysics ,Laser-Induced Breakdown Spectroscopy ,Mars Exploration Program ,microphone on Mars ,Planetary science ,SuperCam ,Space and Planetary Science ,Raman spectroscopy ,Systems engineering ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Mars 2020 PERSEVERANCE rover - Abstract
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data. In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds.
- Published
- 2021
13. Atmospheric Science with Visible/Near-Infrared Spectra from the Mars 2020 Perseverance Rover
- Author
-
Pierre Beck, Franck Montmessin, Jérémie Lasue, Sylvestre Maurice, Timothy H. McConnochie, Raymond Newell, Roger C. Wiens, C. Legett, Michael J. Wolff, Thierry Fouchet, Olivier Gasnault, Mark T. Lemmon, B. Chide, D. Venhaus, Raymond Francis, and Claire Newmann
- Subjects
Visible near infrared ,Environmental science ,Mars Exploration Program ,Spectral line ,Astrobiology - Abstract
The Mars 2020 “Perseverance” rover’s SuperCam instrument suite [1,2,3] provides a wide variety of active and passive remote sensing techniques [4, 5, 6, 7] including passive visible & near-infrared (“VISIR”) spectroscopy [8]. Here we present our plans to use the VISIR technique for atmospheric science by observing solar radiation scattered by the Martian sky, similar to the “passive sky” technique demonstrated with ChemCam on the Mars Science Laboratory (MSL) rover [9]. Our presentation will focus on the objectives and techniques of SuperCam VISIR atmospheric science, but we will also present initial atmospheric science results or relevant instrument performance validation results to the extent that such are available at the time of the conference.The objectives of VISIR atmospheric science are O2, CO, and H2O vapor column abundances, and aerosol particle sizes and composition. These objectives are motivated by unexpected seasonal and interannual variability in the O2mixing ratio that is argued to be so large as to require O2 sources and sinks in surface soils [10], by evidence of surface-atmosphere exchange of H2O [11], by the potential significance of O2 and H2O volatiles as field context for returned samples due to their active exchanges with surface materials, and by the Mars 2020 mission [12] objectives of characterizing dust and validating global atmospheric models to prepare for human explorationThe SuperCam spectrometers used for VISIR mode are a ChemCam-heritage reflection spectrometer covering 385–465 nm with < 0.2 nm res. [2], an intensified transmission spectrometer covering 536–853 nm with 0.3–0.7 nm res. [2], and an acousto-optic-tunable-filter (AOTF) -based IR spectrometer covering 1300–2600 nm with 20–30 cm-1 res. [1, 8]. Our primary observing strategy is the same approach used for MSL ChemCam “passive sky” observations [9]: ratioing instrument signals from the two pointing positions with different elevation angles eliminates solar spectrum and instrument response uncertainties that are ~100x and ~10x larger than signals of interest for the transmission and AOTF IR spectrometers, respectively. We will also make use of single pointings directed at the white SuperCam calibration target for less-resource-intensive water vapor and aerosol monitoring, and of multiple-pointing lower-signal-to-noise sky scans to better constrain aerosol size and shape. Sky radiance is fit with a discrete ordinates multiple scattering radiative transfer model identical to that of [9]. As in [9] gas abundances are made robust to aerosol scattering uncertainties by fitting CO2 absorption bands with an aerosol vertical profile parameter.References: [1] Maurice S. et al. (2020) SSR, in press. [2] Wiens R.C. et al. (2021) SSR 217, 4. [3] Manrique J.-A. et al. (2020) SSR 216, 138. [4] Ollila A.M. et al. (2021), this meeting. [5] Ollila A.M. et al. (2018) LPSC 49, 2786. [6] Forni O. et al. (2021), this meeting. [7] Lanza N. L. et al. (2021), this meeting. [8] Johnson J.R et al. (2021), this meeting. [9] McConnochie T.H et al. (2018), Icarus 307, 294. [10] Trainer M.G. et al. (2019), JGR 124, 3000. [11] Savijärvi H. et al. (2016), Icarus 265, 63. [12] Farley K.A. et al. (2020), SSR 216, 142.
- Published
- 2021
14. Initial SuperCam Visible/Near-Infrared Spectra from the Mars 2020 Perseverance Rover
- Author
-
Agnes Cousin, Thierry Fouchet, Olivier Forni, Francois Poulet, Chip Legett, Tim McConnochie, Jeffrey R. Johnson, Roger C. Wiens, Raymond Newell, Jean-Michel Reess, Pierre Beck, Ann Ollila, Cedric Pilorget, Clément Royer, P. Bernardi, Sylvestre Maurice, and Edward A. Cloutis
- Subjects
Visible near infrared ,Mars Exploration Program ,Geology ,Spectral line ,Astrobiology - Abstract
The SuperCam Instrument Suite [1-4], a US-French-Spanish-Danish collaboration, consists of three separate units: the Body Unit (BU) within the Rover [2], the Mast Unit (MU) at the top of the Perseverance Remote Sensing Mast [3], and Calibration Targets [4] located on the rover deck. SuperCam includes a passive visible/near-infrared (VISIR) spectroscopy system that will identify minerals near the rover (mm-scale) to distant outcrops (m-scale) over an extended wavelength range (0.385-0.465 µm, 0.536-0.853 µm, 1.3-2.6 µm) that is diagnostic for most mineral classes.The infrared spectrometer (IRS) in the MU [5] uses an acousto-optic tunable filter (AOTF) excited by a RF signal to successively diffract up to 256 different wavelengths ranging between 1.3 and 2.6 µm on one of two available photodiodes to produce a single spectrum in about 80 seconds at a spectral resolution of 5-20 nm. The field-of-view (FOV) of the IRS is 1.15 mrad and is co-aligned with the RMI boresight. The visible (VIS) system in the BU comprises three spectrometers covering the UV (245 – 340 nm), violet (385 – 465 nm), and visible and near-infrared (VNIR, 536–853 nm). The spectrometers are fed by light collected by the telescope in the MU through an optical fiber connecting the MU and BU. The violet spectrometer has a spectral resolution of 0.12 nm, and the VNIR transmission spectrometer has a spectral resolution of 0.35 – 0.70 nm. The VIS FOV is 0.74 mrad and co-aligned with the IR FOV.Several SuperCam calibration targets (SCCT) are dedicated to VISIR spectroscopy, including an AluWhite white target, an Aeroglaze Z307 black target, and red, cyan, and green color targets [4]. Several of the other targets whose primary purpose is for other techniques exhibit useful VISIR spectral features and will be observed [5].Raw data will be converted to radiance (W/m2/sr/µm) with calibrated wavelengths using the instrument transfer function [6-7]. Relative reflectance spectra will be generated by dividing the calibrated radiance spectrum by either (1) a Mars atmospheric transmission spectrum and then by a modeled solar irradiance spectrum; or (2) a radiance spectrum of the white SCCT taken close in time to the surface observation, as is done with Mastcam-Z calibration [8].This poster will show initial VISIR data acquired on Mars, compared with test and performance data obtained at Paris Observatory, LANL, and JPL. As of this writing, the planned observations during the first ~30 sols include spectra of the white and black SCCTs, and at least one Mars target spectrum.[1] Farley et al. (2020), Space Sci. Rev. 216, 142. [2] Wiens et al. (2020) Space Sci. Rev. 216, in press, [3] Maurice et al. (2020) Space Sci. Rev. 216,in press, [4] Manrique et al. (2020) Space Sci. Rev. 216, 8, 1-27; [5] Cousin et al. (2021) this meeting [6] Fouchet et al. (2021) Icarus, in prep. [7] Royer et al. (2020) Rev. Scient. Instrum. 91, 063105. [8] Bell, J.F. et al. (2021), Space Sci. Rev, in press.
- Published
- 2021
15. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests
- Author
-
Francois Poulet, Nina Lanza, John Michel, Kerry Boyd, Valerie Mousset, Fernando Rull, Anupam K. Misra, Horton E. Newsom, Magdalena Dale, Richard Leveille, Sylvain Bernard, Karim Benzerara, Logan Ott, Timothy H. McConnochie, M. George Duran, Jonathan Deming, C. Glen Peterson, Jorden Celis, Juan Manuel Madariaga, Anthony Nelson, Elizabeth C. Auden, Violaine Sautter, Paolo Pilleri, Naomi Murdoch, Susanne Schröder, Joseph H. Sarrao, Miles Egan, Bruno Dubois, Ann Ollila, Roberta A. Klisiewicz, M. Deleuze, K. McCabe, Ryan B. Anderson, Kevin Clark, Noureddine Melikechi, Jens Frydenvang, Matthew R. Dirmyer, A. Regan, Pierre Beck, Olivier Forni, A. Reyes-Newell, David Mimoun, Lauren DeFlores, Stéphane Le Mouélic, Nicolas Mangold, Eric Lorigny, Denine Gasway, John P. Grotzinger, M. Caffrey, Shiv K. Sharma, J. Javier Laserna, Olivier Gasnault, Steven P. Love, Eric Lewin, Sophie Jacquinod, Jeffrey R. Johnson, Dorothea Delapp, Soren N. Madsen, James Lake, Kepa Castro, Joan Ervin, Olivier Beyssac, C. Donny, Yann Parot, J. P. Martinez, Pierre-Yves Meslin, Gabriel Pont, Jean-Michel Reess, L. Parès, P. Bernardi, D. Venhaus, Guillermo Lopez-Reyes, Benjamin Quertier, Gorka Arana, Morten Madsen, Ivair Gontijo, Ralph D. Lorenz, Philip J. Romano, Ian A. Trettel, S. Michael Angel, Gilles Montagnac, Joseph Becker, Vishnu Sridhar, Rafal Pawluczyk, Jérémie Lasue, P. Cais, William Rapin, Jose Antonio Manrique, Xavier Jacob, Clement Royer, Jacob Valdez, I. Torre-Fdez, Amaury Fau, Peter Willis, Louis Borges, Cheryl Provost, Elizabeth C. Cordoba, M. L. Underwood, Justin McGlown, Daniel Seitz, S. A. Storms, Briana Lucero, Heather Quinn, Thierry Fouchet, Raymond Newell, Cécile Fabre, B. Chide, Y. André, Jeffrey Carlson, Roger C. Wiens, Scott M. McLennan, Woodward W. Fischer, Benigno Sandoval, S. Robinson, Patrick Pinet, Samuel M. Clegg, Agnes Cousin, Sylvestre Maurice, Edward A. Cloutis, Gilles Dromart, Franck Montmessin, C. Legett, Andres Valdez, Bruno Bousquet, Reuben Fresquez, Terra Shepherd, Zachary R. Ousnamer, Pablo Sobron, M. Toplis, Marcel J. Schoppers, Jesús Martínez-Frías, D. T. Beckman, Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), University of Hawai‘i [Mānoa] (UHM), Astrogeology Science Center [Flagstaff], United States Geological Survey [Reston] (USGS), Centre National d'Études Spatiales [Toulouse] (CNES), University of South Carolina [Columbia], Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), University of Winnipeg, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), University of Copenhagen = Københavns Universitet (UCPH), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de mécanique des fluides de Toulouse (IMFT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Universidad de Valladolid [Valladolid] (UVa), Universidad de Málaga [Málaga] = University of Málaga [Málaga], McGill University = Université McGill [Montréal, Canada], Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), University of Maryland [College Park], University of Maryland System, State University of New York (SUNY), University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), The University of New Mexico [Albuquerque], Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), FiberTech Optica (FTO), Institut für Optische Sensorsysteme, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), SETI Institute, Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), University of Copenhagen = Københavns Universitet (KU), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Laboratoire de Planétologie et Géodynamique - Angers (LPG-ANGERS), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Mars ,01 natural sciences ,7. Clean energy ,Article ,law.invention ,Telescope ,symbols.namesake ,Jezero crater ,Optics ,ChemCam instrument ,law ,Microphone on Mars ,0103 physical sciences ,SuperCam ,planetary exploration ,luminescence ,Traitement du signal et de l'image ,Perseverance rover ,Spectroscopy ,010303 astronomy & astrophysics ,Infrared spectroscopy ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Physics ,laboratory curiosity rover ,remote Raman system ,LIBS ,Spectrometer ,business.industry ,Detector ,Astronomy and Astrophysics ,Mars Exploration Program ,Gale crater ,Laser ,induced breakdown spectroscopy ,Wavelength ,in-situ ,mission ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Raman spectroscopy ,symbols ,business - Abstract
The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam's body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245-340 and 385-465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535-853 nm ( 105 - 7070 cm − 1 Raman shift relative to the 532 nm green laser beam) with 12 cm − 1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars. Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spectroscopy are shown, demonstrating clear mineral identification with both techniques. Luminescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these subsystems as well., Proyecto MINECO Retos de la Sociedad. Ref. ESP2017-87690-C3-1-R
- Published
- 2021
16. Providing unbiased IR spectra on Mars: the ground calibration of the infrared spectrometer onboard Perseverance rover
- Author
-
Cedric Pilorget, Jeffrey R. Johnson, Jean-Michel Reess, C. Quantin-Nataf, Clément Royer, Lucia Mandon, Ann Ollila, Olivier Forni, Raymond Newell, Sylvestre Maurice, P. Bernardi, Thierry Fouchet, Pierre Beck, Olivier Gasnault, Roger C. Wiens, and Francois Poulet
- Subjects
Materials science ,Calibration ,Infrared spectroscopy ,Mars Exploration Program ,Remote sensing - Published
- 2021
17. Trusted Node QKD at an Electrical Utility
- Author
-
Nicholas A. Peters, Claira Safi, Philip G. Evans, D. Duncan Earl, Muneer Alshowkan, Raymond Newell, Daniel D. Mulkey, Justin L. Tripp, and Glen Peterson
- Subjects
Cybersecurity ,General Computer Science ,quantum key distribution ,Computer science ,Interoperability ,FOS: Physical sciences ,electrical substation ,Quantum key distribution ,Electric utility ,General Materials Science ,Quantum Physics ,Quantum network ,trusted node ,business.industry ,Node (networking) ,General Engineering ,Critical infrastructure protection ,trusted relay ,TK1-9971 ,Smart grid ,Software deployment ,network ,Electrical engineering. Electronics. Nuclear engineering ,business ,Quantum Physics (quant-ph) ,Computer network - Abstract
Challenges facing the deployment of quantum key distribution (QKD) systems in critical infrastructure protection applications include the optical loss-key rate tradeoff, addition of network clients, and interoperability of vendor-specific QKD hardware. Here, we address these challenges and present results from a recent field demonstration of three QKD systems on a real-world electric utility optical fiber network., Comment: 10 pages, 8 figures; submitted to IEEE Access
- Published
- 2021
- Full Text
- View/download PDF
18. First atmospheric results produced by the SuperCam instrument on Mars2020
- Author
-
Franck Montmessin, Timothy McConnochie, Thierry Fouchet, Olivier Forni, Paolo Pilleri, Clément Royer, Elise Knutsen, Tanguy Bertrand, Olivier Gasnault, Jeremie Lasue, Carey Legett, Mark Lemmon, Raymond Newell, Dawn Venhaus, Sylvestre Maurice, Roger Wiens, and Fouchet, Thierry
- Subjects
[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
The SuperCam instrument [1,2] onboard Mars2020 disposes of a variety of active and passive techniques, including passive spectroscopy in the 0.40-0.85 (VIS) and 1.3 to 2.6 microns (IR, [3,4]) wavelength ranges. Since the landing on Mars of Perseverance in February 2021, Supercam has acquired numerous observations of its near and distant environment, exploring the geological and mineralogical context of Jezero crater. In addition, several measurements were devoted to probing the atmosphere surrounding the Perseverance rover. The technique of using sky spectra in passive mode, known as "passive sky", has already been demonstrated with ChemCam on the Mars Science Laboratory (MSL) rover [4]. SuperCam provides a superset of the ChemCam capabilities used in [4], and in particular adds a near-infrared component that includes absorption and scattering characteristics of key gases and aerosols/clouds. "Passive sky" measurements have typically been performed every other week to allow a consistent monitoring of the seasonal evolution of the main quantities (CO2, O2, H2O, CO, aerosols/clouds). Particular attention was given to joint measurements of O2 and CO, as they appear as key components of the Martian chemical cycle and have never been measured together at the same time on the surface of Mars. As the 2 m wavelength region is used for the first time at the surface of Mars, it enables the detection of CO (around 2.35 m). CO possesses a small absorption that has made it difficult to identify in SuperCam spectra so far. An overview of SuperCam's progress to date in its attempt to characterize the Martian atmosphere at Jezero will be presented. References : [1] Wiens, R.C., et al. , 2021. Space Sci Rev 217, 4, [2] Maurice, S., et al., 2021. Space Sci Rev 217, 47, [3] Royer, C., et al.., 2020. Review of Scientific Instruments 91, 063105, [4] Fouchet, T., et al., 2021, Icarus, submitted. [5] McConnochie T. H et al., 2018. Icarus 307, 294
- Published
- 2021
19. Photography in British Political History
- Author
-
Sir Anthony Seldon and Raymond Newell
- Subjects
Politics ,History ,Political history ,Referendum ,Photography ,Subject (philosophy) ,Social media ,Narrative ,Journalism ,Visual arts - Abstract
This chapter examines the role of photography within British politics, from the first photograph of a British prime minister in office to the dramatic events of the 2016 EU referendum. With reference to 20 historic photographs taken over the last 160 years, we decipher just how photography has changed the political landscape through the capturing of unique moments that other mediums fail to convey, with a particular focus on premiership. We discuss how the artistic nature of photography, one which tells us more about the subject than the artist, vastly enhances our visual understanding of the past and can teach us more about the candid realities of political history than previous mediums. Impacts of major photographical developments on politics, from the advent of pictorial journalism to colour printing to social media, are also explored apropos of the use of photography by press and politicians to shape political narratives, and the impact it can have on public perception of events.
- Published
- 2021
20. Initial results of the first visible and near-infrared spectrometer on the Martian surface: SuperCam unveils Jezero crater’s ground mineralogy
- Author
-
Clément Royer, Pierre Beck, Lucia Mandon, P. Bernardi, Sylvestre Maurice, Francois Poulet, Olivier Forni, C. Quantin-Nataf, Thierry Fouchet, Jean-Michel Reess, Ann Ollila, Olivier Gasnault, Cedric Pilorget, Raymond Newell, Jeffrey R. Johnson, and Roger C. Wiens
- Subjects
Impact crater ,Martian surface ,Near infrared spectrometer ,Mineralogy ,Geology - Published
- 2021
21. The Processing Electronics and Detector of the Mars 2020 SHERLOC Instrument
- Author
-
Anthony Nelson, Joshua Sackos, Rohit Bhartia, Justin McGlown, Randy Pollock, Luther W. Beegle, Lauren DeFlores, Raymond Newell, Brian Monacelli, Heather Quinn, Glen Peterson, Kyle Uckert, Austin Nordman, John Michel, Denine Gasway, M. Caffrey, and Kerry Boyd
- Subjects
Physics ,Spectrometer ,business.industry ,010401 analytical chemistry ,Detector ,Context (language use) ,Mars Exploration Program ,01 natural sciences ,0104 chemical sciences ,Optics ,Martian surface ,0103 physical sciences ,Charge-coupled device ,Spectral resolution ,business ,010303 astronomy & astrophysics ,Robotic arm - Abstract
The SHERLOC instrument (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals) is an ultraviolet (UV) Raman and fluorescence spectrometer that will be deployed on the Mars 2020 rover mission. The instrument includes a context microscopic imager with resolution of $10\ \mu\mathrm{m}$ , and the scanning laser has a spot size of $100\ \mu\mathrm{m}$ , which allows SHERLOC to generate spatially and spectrally resolved data cubes without contact with the Martian surface (typically ∼5 cm of standoff from an abraded surface); it is designed to detect and characterize organics and astrobiologically relevant minerals in the search for past life. The instrument is led by Jet Propulsion Laboratory (JPL) with electronics, software, and electronic ground support equipment provided by Los Alamos National Laboratory (LANL), among others. The instrument is composed of two main physical components: the SHERLOC body assembly (SBA) and the turret assembly (STA). The SBA resides in the main body of the rover and operates in a relatively benign environment, while the STA is mounted on the rover arm turret and experiences extreme temperature fluctuations. The SBA conditions power from the rover, interfaces with the rover for command and data handling, and provides the control for the scanner and spectrometer. The SBA incorporates a LEON3 processor that runs all of the spectroscopy flight software. The STA houses the laser, laser power supply, imagers, scanning mirror, optics, and charge coupled device detector. The STA and SBA communicate via Spacewire over 12m of flex circuit routed down the rover robotic arm. The instrument is designed to autonomously scan a sample scene of approximately 7 × 7 mm, process the resulting data, and then subsequently interrogate regions of interest with much higher spatial and spectral resolution. This paper will describe the instrument spectroscopy electronics design and operation. It will cover the sampling and acquisition of data from the CCD, the detector noise performance, as well as storage and transmission of data to the vehicle.
- Published
- 2020
22. Demonstration of a Quantum Key Distribution Trusted Node on an Electric Utility Fiber Network
- Author
-
Steve Morrison, Nicholas A. Peters, Raymond Newell, Tyler Morgan, Philip G. Evans, Glen Peterson, and Ken Jones
- Subjects
Electric utility ,Quantum technology ,Computer science ,Fiber (mathematics) ,business.industry ,Node (networking) ,Fiber network ,Information security ,Quantum key distribution ,Grid ,business ,Computer Science::Cryptography and Security ,Computer network - Abstract
We present a trusted node quantum key distribution system deployed at an electric utility. We show the QKD distance limitation can be extended using trusted nodes with realistic utility fiber infrastructure, demonstrating the possibility of quantum technologies in providing information security to electric grid devices.
- Published
- 2019
23. Quantum Networks for Open Science (QNOS) Workshop
- Author
-
Saikat Guha, Prem Kumar, Nicholas A. Peters, Inder Monga, Thomas Ndousse-Fetter, Andrei Nomerotski, Warren P. Grice, Raymond Newell, Scott A. Hamilton, Ben Yoo, Don Towsley, and T.E. Chapuran
- Subjects
Open science ,Quantum network ,Computer science ,Data science - Published
- 2019
24. Planetary Geochemical Investigations Using Raman and Laser-Induced Breakdown Spectroscopy
- Author
-
Anupam K. Misra, James L. Lambert, Steven C. Bender, Sue Smrekar, Kristy L. Nowak-Lovato, Sylvestre Maurice, Shiv K. Sharma, M. Darby Dyar, Raymond Newell, Roger C. Wiens, and Samuel M. Clegg
- Subjects
Martian ,Materials science ,biology ,Spectrometer ,Venus ,Mars Exploration Program ,biology.organism_classification ,symbols.namesake ,symbols ,Calibration ,Laser-induced breakdown spectroscopy ,Raman spectroscopy ,Spectroscopy ,Instrumentation ,Remote sensing - Abstract
An integrated Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) instrument is a valuable geoanalytical tool for future planetary missions to Mars, Venus, and elsewhere. The ChemCam instrument operating on the Mars Curiosity rover includes a remote LIBS instrument. An integrated Raman-LIBS spectrometer (RLS) based on the ChemCam architecture could be used as a reconnaissance tool for other contact instruments as well as a primary science instrument capable of quantitative mineralogical and geochemical analyses. Replacing one of the ChemCam spectrometers with a miniature transmission spectrometer enables a Raman spectroscopy mineralogical analysis to be performed, complementing the LIBS chemical analysis while retaining an overall architecture resembling ChemCam. A prototype transmission spectrometer was used to record Raman spectra under both Martian and Venus conditions. Two different high-pressure and high-temperature cells were used to collect the Raman and LIBS spectra to simulate surface conditions on Venus. The resulting LIBS spectra were used to generate a limited partial least squares Venus calibration model for the major elements. These experiments demonstrate the utility and feasibility of a combined RLS instrument.
- Published
- 2014
25. Novel fiber-optic geometries for fast quantum communication
- Author
-
Jeffrey J. Perkins, Raymond Newell, Charles R. Schabacker, and Craig Richardson
- Subjects
Physics ,Mode volume ,Optical fiber ,business.industry ,Single-mode optical fiber ,Physics::Optics ,Polarization-maintaining optical fiber ,Long-period fiber grating ,law.invention ,Optics ,Fiber Bragg grating ,law ,Orbital angular momentum multiplexing ,Orbital angular momentum of light ,business - Abstract
Recent experiments have generated great interest in combined wavlength (WDM) and spatial (SDM) divison multiplexing using optical angular momentum (OAM) at data rates orders of magnitude better than current telecommunication standards. We discuss here a class of novel fiber optic devices that induce mode coupling along the optical axis of the fiber by sinusoidally varying the refractive index. Using the analogy between the wave equation for weakly guiding fibers and the paraxial equation, we review fibers that support Laguerre-Gauss modes and, motivated by these works, demonstrate that similar fibers with different core shapes support Hermite-Gauss modes in the same regime. Finally, we utilize these relations to demonstrate how one might generate different orbital angular momentum states using induced coupling between Hermite-Gauss modes, motivated by the works of many previous authors. We further describe a class of devices that could generate either a mode with a defined orbital angular momentum, and support its propagation along a fiber, or create a superposition of modes from a single modal input. Previous efforts focused on the generation of OAM states in a fiber have required extremely exotic refractive index profiles, and we present here a method based on already developed refrative index profiles and manipulation techniques, specifically using fiber bragg gratings to drive modal coupling in a fiber, in an effort to generate states with well defined OAM.
- Published
- 2013
26. A magneto-optical trap loaded from a pyramidal funnel
- Author
-
P. A. Voytas, Robert S. Williamson, Thad Walker, and Raymond Newell
- Subjects
Materials science ,business.product_category ,business.industry ,Atomic and Molecular Physics, and Optics ,Magnetic field ,Trap (computing) ,Optics ,Radiation pressure ,Optical molasses ,Laser cooling ,Magneto-optical trap ,Light beam ,Funnel ,Atomic physics ,business - Abstract
We have demonstrated the transfer of 39 K and 40 K atoms from a magneto-optical funnel (a hollow pyramidal mirror) through a low (0:05 l/s) conductance hole and into a conventional magneto-optical trap (mot) 35 cm away, with an efficiency of approximately six percent. This simple scheme should be useful for experiments requiring high loading rates with minimal contamination from hot untrapped atoms.
- Published
- 2009
27. Dense atom clouds in a holographic atom trap
- Author
-
J. Sebby, Thad Walker, and Raymond Newell
- Subjects
Diffraction ,Physics ,Condensed Matter::Quantum Gases ,Optical lattice ,Quantum Physics ,Atomic Physics (physics.atom-ph) ,Holography ,FOS: Physical sciences ,Atomic and Molecular Physics, and Optics ,law.invention ,Physics - Atomic Physics ,law ,Ultracold atom ,Lattice (order) ,Phase space ,Rydberg atom ,Atom ,Physics::Atomic Physics ,Atomic physics ,Quantum Physics (quant-ph) - Abstract
We demonstrate the production of high-density cold 87Rb samples (2 x 10(14) atoms/cm3) in a simple optical lattice formed with YAG light that is diffracted from a holographic phase plate. A loading protocol is described that results in 10,000 atoms per 10 microm x 10 microm x 100 microm unit cell of the lattice site. Rapid free evaporation leads to a temperature of 50 microK and phase space densities of 1/150 within 50 ms. The resulting small, high-density atomic clouds are very attractive for a number of experiments, including ultracold Rydberg atom physics.
- Published
- 2003
28. Forced evaporative cooling in a holographic atom trap
- Author
-
J. Sebby, Thad Walker, and Raymond Newell
- Subjects
Condensed Matter::Quantum Gases ,Physics ,Resolved sideband cooling ,Physics::Optics ,chemistry.chemical_element ,Laser ,Rubidium ,law.invention ,chemistry ,law ,Laser cooling ,Atom ,Physics::Atomic and Molecular Clusters ,Atom optics ,Physics::Atomic Physics ,Atomic physics ,Doppler cooling ,Evaporative cooler - Abstract
Summary form only given. We present progress on evaporative cooling of rubidium atoms in a holographic atom trap. Adiabatically decreasing the intensity of our YAG laser results in phase space densities greater than 1/2.
- Published
- 2003
29. Non-destructive spatial heterodyne imaging of cold atoms
- Author
-
Thad Walker, S. Kadlecek, J. Sebby, and Raymond Newell
- Subjects
Heterodyne ,Physics ,Condensed Matter::Quantum Gases ,Range (particle radiation) ,Photon ,Atomic Physics (physics.atom-ph) ,FOS: Physical sciences ,Atomic and Molecular Physics, and Optics ,Physics - Atomic Physics ,Ultracold atom ,Non destructive ,Atom ,Figure of merit ,Physics::Atomic Physics ,Atomic physics ,Beam (structure) - Abstract
We demonstrate a new method for non-destructive imaging of laser-cooled atoms. This spatial heterodyne technique forms a phase image by interfering a strong carrier laser beam with a weak probe beam that passes through the cold atom cloud. The figure of merit equals or exceeds that of phase-contrast imaging, and the technique can be used over a wider range of spatial scales. We show images of a dark spot MOT taken with imaging fluences as low as 61 pJ/cm^2 at a detuning of 11 linewidths, resulting in 0.0004 photons scattered per atom., text+3 figures, submitted to Optics Letters
- Published
- 2000
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.