Zdravljenje okužb z mikroorganizmi, predvsem bakterijskih okužb, predstavlja velik izziv, saj uporaba protimikrobnih učinkovin povzroča vse večjo odpornost. Najbolj pomemben mehanizem odpornosti bakterij je tvorba biofilmov. Bakterije se na površinah združujejo v organizirane tridimenzionalne strukture, ki jih varujejo pred škodljivimi vplivi okolice. Znotraj biofilmov so bakterije lahko do tisočkrat bolj odporne na zunanje vplive kot planktonske bakterije približno 80 % kroničnih okužb je povezanih s pojavom biofilmov. Magistrska naloga je vsebinsko vezana na ARRS projekt “Baktericidna nanorezila: preizkus bimodalnega mehanokemijskega odstranjevanja trdovratnih biofilmov”. Eden od ciljev omenjenega projekta je priprava nanodelcev v obliki paličic, ki so odzivni na magnetno polje, površino pa imajo prevlečeno z lipofilnimi spojinami s pozitivnim nabojem, ki naj bi delovale biocidno. Poleg tega želimo te nanodelce tudi spremljati s fluorescenčnim mikroskopom v ta namen bi nanodelce označili s fluorofori in tako lažje opazovali interakcije z bakterijskim biofilmom. V magistrski nalogi smo pripravili fluorofore, primerne za vgradnjo v plast silike na površini nanodelcev in na primeru nanodelcev silike preverili kako se v le-to vgrajujejo. V ta namen smo sintetizirali lantanoidne komplekse izmed vseh pripravljenih fluoroforov se je za najbolj primernega za vgradnjo v nanodelce silike izkazal evropijev kompleks (spojina 4). Pri pripravi spojin z biocidnim delovanjem smo sintetizirali nekaj pozitivno nabitih kvaternih amonijevih spojin z azidno oz. alkinsko skupino, ki smo jo želeli nadalje pripeti na komplementarni sililni reagent s kemijo klik. Pri sintezi sililnih reagentov smo preizkušali predvsem različne pristope za vpeljavo alkinske skupine na te reagente, pri tem smo ugotovili, da so sililni etri obstojni tudi pri povišani temperaturi. Žal vezave teh spojin na nanodelce nismo izvedli, saj v času nastajanja naloge nismo imeli na razpolago ustreznih materialov za pripravo biocidnih površin. V sklopu naloge smo uspeli pripraviti stabilno suspenzijo nanodelcev silike z vgrajenim evropijevim kompleksom, ki so primerni za opazovanje delcev z optičnimi metodami v prihodnosti pa bodo na zunanjo površino silike na nanodelcih vezali tudi pripravljene pozitivno nabite sililne reagente. Treatment of bacterial infections is a major challenge due to the overuse of antimicrobial agents, which in turn leads to resistance. One of the common mechanisms of bacterial resistance is biofilm formation. Bacteria clump together on surfaces to form organized three-dimensional structures that protect them from harmful environmental agents. Bacteria protected by biofilms can be up to a thousand times more resistant to external influences than planktonic bacteria approximately 80% of chronic infections are attributed to biofilms. This Master’s thesis’ content is linked to an ARRS project named: “Bactericidal nanoblades: a proof-of-concept approach for bimodal chemo-mechanical eradication of persistent biofilms”. One of the goals of this project is preparation of nanoparticles shaped as blades that respond to magnetic field, and coating of their surface with lipophilic compounds with positive charge that are supposedly biocidal. Besides that, we want to monitor these nanoparticles with a fluorescent microscope for this purpose, we would like to mark them with fluorophores which would allow us to more easily observe their reaction with bacterial biofilms. In this work we prepared fluorophores that are suitable for binding to silica-based surfaces of nanoparticles we observed said fluorophores’ binding to silica nanoparticles. For this purpose, we synthesized lanthanide complexes and among all prepared compounds we found that the most suitable for binding to silica nanoparticles is an europium complex (compound 4). For the preparation of compounds with biocidal effect, we synthesized positively charged quaternary ammonium compounds with azide or alkyne groups that we intended to further bind to a complementary silyl reagent using click chemistry. For the synthesis of silyl reagents, we tried different approaches for the introduction of alkyne groups to these reagents and we discovered that silyl ethers are resistant to higher temperatures. Unfortunately, we did not perform their binding to nanoparticles because at the time we did not have the appropriate nanomaterial for the preparation of biocidal surfaces. In this work, we have succeeded in preparing a stable suspension of silica nanoparticles labeled with europium complex and suitable for observation with fluorescent microscope. In the future, we also hope to bind positively charged silyl reagents to the surface of nanoparticles.