1. Fermi surface topology and hot spot distribution in the Kondo lattice system CeB 6
- Author
-
Neupane, M, Alidoust, N, Belopolski, I, Bian, G, Xu, SY, Kim, DJ, Shibayev, PP, Sanchez, DS, Zheng, H, Chang, TR, Jeng, HT, Riseborough, PS, Lin, H, Bansil, A, Durakiewicz, T, Fisk, Z, and Hasan, MZ
- Subjects
Condensed Matter::Strongly Correlated Electrons - Abstract
© 2015 American Physical Society. Rare-earth hexaborides have attracted considerable attention recently in connection to a variety of correlated phenomena including heavy fermions, superconductivity, and low-temperature magnetic phases. Here, we present high-resolution angle-resolved photoemission spectroscopy studies of trivalent CeB6 and divalent BaB6 rare-earth hexaborides. We find that the Fermi surface electronic structure of CeB6 consists of large oval-shaped pockets around the X points of the Brillouin zone, whereas the states around the zone center Γ point are strongly renormalized. Our first-principles calculations agree with our experimental results around the X points but not around the Γ point, indicating areas of strong renormalization located near Γ. The Ce quasiparticle states participate in the formation of hot spots at the Fermi surface, whereas the incoherent f states hybridize and lead to the emergence of dispersive features absent in the non-f counterpart BaB6. Our results provide an understanding of the electronic structure in rare-earth hexaborides, which will be useful in elucidating the nature of the exotic low-temperature phases in these materials.
- Published
- 2015