70 results on '"Thomassé, Stéphan"'
Search Results
2. Bounded twin-width graphs are polynomially $\chi$-bounded
- Author
-
Bourneuf, Romain and Thomassé, Stéphan
- Subjects
Mathematics - Combinatorics ,Computer Science - Discrete Mathematics - Abstract
We show that every graph with twin-width $t$ has chromatic number $O(\omega ^{k_t})$ for some integer $k_t$, where $\omega$ denotes the clique number. This extends a quasi-polynomial bound from Pilipczuk and Soko{\l}owski and generalizes a result for bounded clique-width graphs by Bonamy and Pilipczuk. The proof uses the main ideas of the quasi-polynomial approach, with a different treatment of the decomposition tree. In particular, we identify two types of extensions of a class of graphs: the delayed-extension (which preserves polynomial $\chi$-boundedness) and the right-extension (which preserves polynomial $\chi$-boundedness under bounded twin-width condition). Our main result is that every bounded twin-width graph is a delayed extension of simpler classes of graphs, each expressed as a bounded union of right extensions of lower twin-width graphs.
- Published
- 2023
3. Maximum Independent Set when excluding an induced minor: $K_1 + tK_2$ and $tC_3 \uplus C_4$
- Author
-
Bonnet, Édouard, Duron, Julien, Geniet, Colin, Thomassé, Stéphan, and Wesolek, Alexandra
- Subjects
FOS: Computer and information sciences ,Discrete Mathematics (cs.DM) ,Computer Science - Data Structures and Algorithms ,FOS: Mathematics ,Mathematics - Combinatorics ,Data Structures and Algorithms (cs.DS) ,05C85 ,Combinatorics (math.CO) ,F.2.2 ,Computer Science - Discrete Mathematics - Abstract
Dallard, Milani\v{c}, and \v{S}torgel [arXiv '22] ask if for every class excluding a fixed planar graph $H$ as an induced minor, Maximum Independent Set can be solved in polynomial time, and show that this is indeed the case when $H$ is any planar complete bipartite graph, or the 5-vertex clique minus one edge, or minus two disjoint edges. A positive answer would constitute a far-reaching generalization of the state-of-the-art, when we currently do not know if a polynomial-time algorithm exists when $H$ is the 7-vertex path. Relaxing tractability to the existence of a quasipolynomial-time algorithm, we know substantially more. Indeed, quasipolynomial-time algorithms were recently obtained for the $t$-vertex cycle, $C_t$ [Gartland et al., STOC '21] and the disjoint union of $t$ triangles, $tC_3$ [Bonamy et al., SODA '23]. We give, for every integer $t$, a polynomial-time algorithm running in $n^{O(t^5)}$ when $H$ is the friendship graph $K_1 + tK_2$ ($t$ disjoint edges plus a vertex fully adjacent to them), and a quasipolynomial-time algorithm running in $n^{O(t^2 \log n)+t^{O(1)}}$ when $H$ is $tC_3 \uplus C_4$ (the disjoint union of $t$ triangles and a 4-vertex cycle). The former extends a classical result on graphs excluding $tK_2$ as an induced subgraph [Alekseev, DAM '07], while the latter extends Bonamy et al.'s result., Comment: 15 pages, 2 figures
- Published
- 2023
4. ( #» P 6 , triangle)-free digraphs have bounded dichromatic number
- Author
-
Aboulker, Pierre, Aubian, Guillaume, Charbit, Pierre, Thomassé, Stéphan, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL), UFR Mathématiques et informatique [Sciences] - Université Paris Cité, Université Paris Cité (UPCité), École normale supérieure de Lyon (ENS de Lyon), group Casino/ENS Chair on Algorithmics andMachine Learning, ANR-21-CE48-0012,DAGDigDec,DAGs et Decompositions des Digraphes(2021), and ANR-19-CE48-0013,DIGRAPHS,Digraphes(2019)
- Subjects
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] - Abstract
The dichromatic number of an oriented graph is the minimum size of a partition of its vertices into acyclic induced subdigraphs. We prove that oriented graphs with no induced directed path on six vertices and no triangle have bounded dichromatic number. This is one (small) step towards the general conjecture asserting that for every oriented tree T and every integer k, any oriented graph that does not contain an induced copy of T nor a clique of size k has dichromatic number at most some function of k and T .
- Published
- 2023
5. Temporalizing digraphs via linear-size balanced bi-trees
- Author
-
Bessy, Stéphane, Thomassé, Stéphan, and Viennot, Laurent
- Subjects
FOS: Computer and information sciences ,F.2.2 ,G.2.2 ,Discrete Mathematics (cs.DM) ,05C20, 05C85, 68R10 ,Computer Science - Data Structures and Algorithms ,FOS: Mathematics ,Mathematics - Combinatorics ,Data Structures and Algorithms (cs.DS) ,Combinatorics (math.CO) ,Computer Science - Discrete Mathematics - Abstract
In a directed graph $D$ on vertex set $v_1,\dots ,v_n$, a \emph{forward arc} is an arc $v_iv_j$ where $i0$ such that one can always find an enumeration realizing $c.|R|$ forward connected pairs $\{x_i,y_i\}$ (in either direction)., Comment: 10 pages, 1 figure
- Published
- 2023
- Full Text
- View/download PDF
6. Extremal Independent Set Reconfiguration
- Author
-
Bousquet, Nicolas, Durain, Bastien, Pierron, Théo, and Thomassé, Stéphan
- Subjects
FOS: Computer and information sciences ,Discrete Mathematics (cs.DM) ,FOS: Mathematics ,Mathematics - Combinatorics ,05C35, 05C69 ,Combinatorics (math.CO) ,Computer Science - Discrete Mathematics - Abstract
The independent set reconfiguration problem asks whether one can transform one given independent set of a graph into another, by changing vertices one by one in such a way the intermediate sets remain independent. Extremal problems on independent sets are widely studied: for example, it is well known that an $n$-vertex graph has at most $3^{n/3}$ maximum independent sets (and this is tight). This paper investigates the asymptotic behavior of maximum possible length of a shortest reconfiguration sequence for independent sets of size $k$ among all $n$-vertex graphs. We give a tight bound for $k=2$. We also provide a subquadratic upper bound (using the hypergraph removal lemma) as well as an almost tight construction for $k=3$. We generalize our results for larger values of $k$ by proving an $n^{2\lfloor k/3 \rfloor}$ lower bound.
- Published
- 2023
- Full Text
- View/download PDF
7. Bounded twin-width graphs are polynomially $χ$-bounded
- Author
-
Bourneuf, Romain and Thomassé, Stéphan
- Subjects
FOS: Computer and information sciences ,Discrete Mathematics (cs.DM) ,FOS: Mathematics ,Combinatorics (math.CO) - Abstract
We show that every graph with twin-width $t$ has chromatic number $O(ω^{k_t})$ for some integer $k_t$, where $ω$ denotes the clique number. This extends a quasi-polynomial bound from Pilipczuk and Sokołowski and generalizes a result for bounded clique-width graphs by Bonamy and Pilipczuk. The proof uses the main ideas of the quasi-polynomial approach, with a different treatment of the decomposition tree. In particular, we identify two types of extensions of a class of graphs: the delayed-extension (which preserves polynomial $χ$-boundedness) and the right-extension (which preserves polynomial $χ$-boundedness under bounded twin-width condition). Our main result is that every bounded twin-width graph is a delayed extension of simpler classes of graphs, each expressed as a bounded union of right extensions of lower twin-width graphs.
- Published
- 2023
- Full Text
- View/download PDF
8. Twin-width V: linear minors, modular counting, and matrix multiplication
- Author
-
Bonnet, Édouard, Giocanti, Ugo, Ossona de Mendez, Patrice, and Thomassé, Stéphan
- Subjects
FOS: Computer and information sciences ,Computer Science - Logic in Computer Science ,computational complexity ,Discrete Mathematics (cs.DM) ,matrix multiplication ,algorithms ,68W01 ,Theory of computation → Logic ,Logic in Computer Science (cs.LO) ,linear algebra ,matrices ,model theory ,parity and linear minors ,Computer Science - Data Structures and Algorithms ,FOS: Mathematics ,Theory of computation → Parameterized complexity and exact algorithms ,Mathematics - Combinatorics ,Data Structures and Algorithms (cs.DS) ,Combinatorics (math.CO) ,F.2.2 ,Twin-width ,Computer Science - Discrete Mathematics - Abstract
We continue developing the theory around the twin-width of totally ordered binary structures (or equivalently, matrices over a finite alphabet), initiated in the previous paper of the series. We first introduce the notion of parity and linear minors of a matrix, which consists of iteratively replacing consecutive rows or consecutive columns with a linear combination of them. We show that a matrix class (i.e., a set of matrices closed under taking submatrices) has bounded twin-width if and only if its linear-minor closure does not contain all matrices. We observe that the fixed-parameter tractable (FPT) algorithm for first-order model checking on structures given with an O(1)-sequence (certificate of bounded twin-width) and the fact that first-order transductions of bounded twin-width classes have bounded twin-width, both established in Twin-width I, extend to first-order logic with modular counting quantifiers. We make explicit a win-win argument obtained as a by-product of Twin-width IV, and somewhat similar to bidimensionality, that we call rank-bidimensionality. This generalizes the seminal work of Guillemot and Marx [SODA '14], which builds on the Marcus-Tardos theorem [JCTA '04]. It works on general matrices (not only on classes of bounded twin-width) and, for example, yields FPT algorithms deciding if a small matrix is a parity or a linear minor of another matrix given in input, or exactly computing the grid or mixed number of a given matrix (i.e., the maximum integer k such that the row set and the column set of the matrix can be partitioned into k intervals, with each of the k² defined cells containing a non-zero entry, or two distinct rows and two distinct columns, respectively). Armed with the above-mentioned extension to modular counting, we show that the twin-width of the product of two conformal matrices A, B (i.e., whose dimensions are such that AB is defined) over a finite field is bounded by a function of the twin-width of A, of B, and of the size of the field. Furthermore, if A and B are n × n matrices of twin-width d over F_q, we show that AB can be computed in time O_{d,q}(n² log n). We finally present an ad hoc algorithm to efficiently multiply two matrices of bounded twin-width, with a single-exponential dependence in the twin-width bound. More precisely, pipelined to observations and results of Pilipczuk et al. [STACS '22], we obtain the following. If the inputs are given in a compact tree-like form (witnessing twin-width at most d), called twin-decomposition of width d, then two n × n matrices A, B over F₂ can be multiplied in time 4^{d+o(d)}n, in the sense that a twin-decomposition of their product AB, with width 2^{d+o(d)}, is output within that time, and each entry of AB can be queried in time O_d(log log n). Furthermore, for every ε > 0, the query time can be brought to constant time O(1/ε) if the running time is increased to near-linear 4^{d+o(d)}n^{1+ε}. Notably, the running time is sublinear (essentially square root) in the number of (non-zero) entries., LIPIcs, Vol. 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023), pages 15:1-15:16
- Published
- 2022
9. Twin-width VIII: delineation and win-wins
- Author
-
Bonnet, Édouard, Chakraborty, Dibyayan, Kim, Eun Jung, Köhler, Noleen, Lopes, Raul, Thomassé, Stéphan, Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE), Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
FOS: Computer and information sciences ,Computer Science - Logic in Computer Science ,05C85, 05C75 ,Discrete Mathematics (cs.DM) ,monadic dependence and stability ,intersection graphs ,visibility graphs ,Logic in Computer Science (cs.LO) ,Theory of computation → Fixed parameter tractability ,Theory of computation → Graph algorithms analysis ,Computer Science - Data Structures and Algorithms ,FOS: Mathematics ,Mathematics - Combinatorics ,first-order model checking ,Data Structures and Algorithms (cs.DS) ,[INFO]Computer Science [cs] ,Combinatorics (math.CO) ,F.2.2 ,Computer Science - Discrete Mathematics ,Twin-width - Abstract
We introduce the notion of delineation. A graph class C is said delineated by twin-width (or simply, delineated) if for every hereditary closure D of a subclass of C, it holds that D has bounded twin-width if and only if D is monadically dependent. An effective strengthening of delineation for a class C implies that tractable FO model checking on C is perfectly understood: On hereditary closures of subclasses D of C, FO model checking on D is fixed-parameter tractable (FPT) exactly when D has bounded twin-width. Ordered graphs [BGOdMSTT, STOC '22] and permutation graphs [BKTW, JACM '22] are effectively delineated, while subcubic graphs are not. On the one hand, we prove that interval graphs, and even, rooted directed path graphs are delineated. On the other hand, we observe or show that segment graphs, directed path graphs (with arbitrarily many roots), and visibility graphs of simple polygons are not delineated. In an effort to draw the delineation frontier between interval graphs (that are delineated) and axis-parallel two-lengthed segment graphs (that are not), we investigate the twin-width of restricted segment intersection classes. It was known that (triangle-free) pure axis-parallel unit segment graphs have unbounded twin-width [BGKTW, SODA '21]. We show that K_{t,t}-free segment graphs, and axis-parallel H_t-free unit segment graphs have bounded twin-width, where H_t is the half-graph or ladder of height t. In contrast, axis-parallel H₄-free two-lengthed segment graphs have unbounded twin-width. We leave as an open question whether unit segment graphs are delineated. More broadly, we explore which structures (large bicliques, half-graphs, or independent sets) are responsible for making the twin-width large on the main classes of intersection and visibility graphs. Our new results, combined with the FPT algorithm for first-order model checking on graphs given with O(1)-sequences [BKTW, JACM '22], give rise to a variety of algorithmic win-win arguments. They all fall in the same framework: If p is an FO definable graph parameter that effectively functionally upperbounds twin-width on a class C, then p(G) ⩾ k can be decided in FPT time f(k) ⋅ |V(G)|^O(1). For instance, we readily derive FPT algorithms for k-Ladder on visibility graphs of 1.5D terrains, and k-Independent Set on visibility graphs of simple polygons. This showcases that the theory of twin-width can serve outside of classes of bounded twin-width., LIPIcs, Vol. 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022), pages 9:1-9:18
- Published
- 2022
10. First Order Logic and Twin-Width in Tournaments and Dense Oriented Graphs
- Author
-
Geniet, Colin and Thomassé, Stéphan
- Subjects
FOS: Computer and information sciences ,Computer Science - Logic in Computer Science ,Discrete Mathematics (cs.DM) ,FOS: Mathematics ,Mathematics - Combinatorics ,Combinatorics (math.CO) ,G.2.2 ,05C20 (Primary), 05C85, 03C13, 05C30 (Secondary) ,Logic in Computer Science (cs.LO) ,Computer Science - Discrete Mathematics - Abstract
We characterise the classes of tournaments with tractable first-order model checking. For every hereditary class of tournaments $\mathcal T$, first-order model checking either is fixed parameter tractable, or is AW$[*]$-hard. This dichotomy coincides with the fact that $\mathcal T$ has either bounded or unbounded twin-width, and that the growth of $\mathcal T$ is either at most exponential or at least factorial. From the model-theoretic point of view, we show that NIP classes of tournaments coincide with bounded twin-width. Twin-width is also characterised by three infinite families of obstructions: $\mathcal T$ has bounded twin-width if and only if it excludes one tournament from each family. This generalises results of Bonnet et al. on ordered graphs. The key for these results is a polynomial time algorithm which takes as input a tournament $T$ and compute a linear order $, 28 pages, 5 figures
- Published
- 2022
11. Twin-width IV: ordered graphs and matrices
- Author
-
Bonnet, Édouard, Giocanti, Ugo, de Mendez, Patrice Ossona, Simon, Pierre, Thomassé, Stéphan, Toruńczyk, Szymon, Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Centre d'Analyse et de Mathématique sociales (CAMS), École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS), Computer Science Institute of Charles University [Prague] (IUUK), Charles University [Prague] (CU), University of California [Berkeley] (UC Berkeley), University of California (UC), University of Varsaw, ANR-21-CE48-0014,TWIN-WIDTH,Twin-width: théorie et applications(2021), and ANR-19-CE48-0013,DIGRAPHS,Digraphes(2019)
- Subjects
FOS: Computer and information sciences ,[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC] ,Computer Science - Logic in Computer Science ,Discrete Mathematics (cs.DM) ,Computational Complexity (cs.CC) ,05A05, 05A16, 05C30 ,Logic in Computer Science (cs.LO) ,Computer Science - Computational Complexity ,Computer Science - Data Structures and Algorithms ,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] ,FOS: Mathematics ,Mathematics - Combinatorics ,Data Structures and Algorithms (cs.DS) ,[INFO]Computer Science [cs] ,Combinatorics (math.CO) ,F.2.2 ,Computer Science - Discrete Mathematics - Abstract
We establish a list of characterizations of bounded twin-width for hereditary, totally ordered binary structures. This has several consequences. First, it allows us to show that a (hereditary) class of matrices over a finite alphabet either contains at least $n!$ matrices of size $n \times n$, or at most $c^n$ for some constant $c$. This generalizes the celebrated Stanley-Wilf conjecture/Marcus-Tardos theorem from permutation classes to any matrix class over a finite alphabet, answers our small conjecture [SODA '21] in the case of ordered graphs, and with more work, settles a question first asked by Balogh, Bollob\'as, and Morris [Eur. J. Comb. '06] on the growth of hereditary classes of ordered graphs. Second, it gives a fixed-parameter approximation algorithm for twin-width on ordered graphs. Third, it yields a full classification of fixed-parameter tractable first-order model checking on hereditary classes of ordered binary structures. Fourth, it provides a model-theoretic characterization of classes with bounded twin-width., Comment: 53 pages, 18 figures
- Published
- 2022
12. Twin-width VII: groups
- Author
-
Bonnet, Édouard, Geniet, Colin, Tessera, Romain, and Thomassé, Stéphan
- Subjects
FOS: Computer and information sciences ,Discrete Mathematics (cs.DM) ,FOS: Mathematics ,Mathematics - Combinatorics ,Group Theory (math.GR) ,Combinatorics (math.CO) ,G.2.2 ,05C25 (Primary) 20F65, 05C30 (Secondary) ,Mathematics - Group Theory ,Computer Science - Discrete Mathematics - Abstract
Twin-width is a recently introduced graph parameter with applications in algorithmics, combinatorics, and finite model theory. For graphs of bounded degree, finiteness of twin-width is preserved by quasi-isometry. Thus, through Cayley graphs, it defines a group invariant. We prove that groups which are abelian, hyperbolic, ordered, solvable, or with polynomial growth, have finite twin-width. Twin-width can be characterised by excluding patterns in the self-action by product of the group elements. Based on this characterisation, we propose a strengthening called uniform twin-width, which is stable under constructions such as group extensions, direct products, and direct limits. The existence of finitely generated groups with infinite twin-width is not immediate. We construct one using a result of Osajda on embeddings of graphs into groups. This implies the existence of a class of finite graphs with unbounded twin-width but containing $2^{O(n)} \cdot n!$ graphs on vertex set $\{1,\dots,n\}$, settling a question asked in a previous work., 33 pages, 7 figures
- Published
- 2022
13. (P6, triangle)-free digraphs have bounded dichromatic number
- Author
-
Aboulker, Pierre, Aubian, Guillaume, Charbit, Pierre, and Thomassé, Stéphan
- Subjects
FOS: Computer and information sciences ,Discrete Mathematics (cs.DM) ,FOS: Mathematics ,Mathematics - Combinatorics ,Combinatorics (math.CO) ,G.2.2 ,05C15, 05C20 ,Computer Science - Discrete Mathematics - Abstract
The dichromatic number of an oriented graph is the minimum size of a partition of its vertices into acyclic induced subdigraphs. We prove that oriented graphs with no induced directed path on six vertices and no triangle have bounded dichromatic number. This is one (small) step towards the general conjecture asserting that for every oriented tree T and every integer k, any oriented graph that does not contain an induced copy of T nor a clique of size k has dichromatic number at most some function of k and T., Comment: 9 pages. Thie version corrects some mistakes on page 2 in the introduction, we were incorrectly citing some of the previous papers on the topic
- Published
- 2022
- Full Text
- View/download PDF
14. Sparse graphs with bounded induced cycle packing number have logarithmic treewidth
- Author
-
Bonamy, Marthe, Bonnet, Édouard, Déprés, Hugues, Esperet, Louis, Geniet, Colin, Hilaire, Claire, Thomassé, Stéphan, Wesolek, Alexandra, Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), Modèles de calcul, Complexité, Combinatoire (MC2), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon), Optimisation Combinatoire (G-SCOP_OC), Laboratoire des sciences pour la conception, l'optimisation et la production (G-SCOP), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Department of Computer Science (Simon Fraser University), Simon Fraser University (SFU.ca), ANR-17-CE40-0015,DISTANCIA,Théorie métrique des graphes(2017), ANR-21-CE48-0014,TWIN-WIDTH,Twin-width: théorie et applications(2021), and ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011)
- Subjects
FOS: Computer and information sciences ,Computer Science::Discrete Mathematics ,Mathematics::Number Theory ,Computer Science - Data Structures and Algorithms ,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] ,FOS: Mathematics ,Mathematics - Combinatorics ,Data Structures and Algorithms (cs.DS) ,Combinatorics (math.CO) ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] - Abstract
A graph is $O_k$-free if it does not contain $k$ pairwise vertex-disjoint and non-adjacent cycles. We show that Maximum Independent Set and 3-Coloring in $O_k$-free graphs can be solved in quasi-polynomial time. As a main technical result, we establish that "sparse" (here, not containing large complete bipartite graphs as subgraphs) $O_k$-free graphs have treewidth (even, feedback vertex set number) at most logarithmic in the number of vertices. This is proven sharp as there is an infinite family of $O_2$-free graphs without $K_{3,3}$-subgraph and whose treewidth is (at least) logarithmic. Other consequences include that most of the central NP-complete problems (such as Maximum Independent Set, Minimum Vertex Cover, Minimum Dominating Set, Minimum Coloring) can be solved in polynomial time in sparse $O_k$-free graphs, and that deciding the $O_k$-freeness of sparse graphs is polynomial time solvable., Comment: 29 pages, 6 figures. v4: updated intro
- Published
- 2022
- Full Text
- View/download PDF
15. A quasi-quadratic vertex Kernel for Cograph edge editing
- Author
-
Crespelle, Christophe, Pellerin, Rémi, and Thomassé, Stéphan
- Subjects
FOS: Computer and information sciences ,Computer Science - Computational Complexity ,Computer Science - Data Structures and Algorithms ,Data Structures and Algorithms (cs.DS) ,Computational Complexity (cs.CC) - Abstract
We provide a $O(k^2 \mathrm{log} k)$ vertex kernel for cograph edge editing. This improves a cubic kernel found by Guillemot, Havet, Paul and Perez [1] which involved four reduction rules. We generalize one of their rules, based on packing of induced paths of length four, by introducing t-modules, which are modules up to t edge modifications. The key fact is that large t-modules cannot be edited more than t times, and this allows to obtain a near quadratic kernel. The extra $\mathrm{log} k$ factor seems tricky to remove as it is necessary in the combinatorial lemma on trees which is central in our proof. Nevertheless, we think that a quadratic bound should be reachable.
- Published
- 2022
- Full Text
- View/download PDF
16. Twin-width III: Max Independent Set, Min Dominating Set, and Coloring
- Author
-
Bonnet, Édouard, Geniet, Colin, Kim, Eun Jung, Thomassé, Stéphan, Watrigant, Rémi, École normale supérieure de Lyon (ENS de Lyon), Warsaw University of Technology [Warsaw], Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), and ANR-19-CE48-0013,DIGRAPHS,Digraphes(2019)
- Subjects
FOS: Computer and information sciences ,Discrete Mathematics (cs.DM) ,Parameterized Algorithms ,Computational Complexity (cs.CC) ,Exact Algorithms ,Max Independent Set ,Min Dominating Set ,Theory of computation → Fixed parameter tractability ,Computer Science - Computational Complexity ,Theory of computation → Graph algorithms analysis ,Computer Science - Data Structures and Algorithms ,FOS: Mathematics ,Coloring ,Mathematics - Combinatorics ,Data Structures and Algorithms (cs.DS) ,05C85 ,[INFO]Computer Science [cs] ,Combinatorics (math.CO) ,F.2.2 ,Approximation Algorithms ,Twin-width ,Computer Science - Discrete Mathematics ,MathematicsofComputing_DISCRETEMATHEMATICS - Abstract
We recently introduced the notion of twin-width, a novel graph invariant, and showed that first-order model checking can be solved in time f(d,k)n for n-vertex graphs given with a witness that the twin-width is at most d, called d-contraction sequence or d-sequence, and formulas of size k [Bonnet et al., FOCS '20]. The inevitable price to pay for such a general result is that f is a tower of exponentials of height roughly k. In this paper, we show that algorithms based on twin-width need not be impractical. We present 2^{O(k)}n-time algorithms for k-Independent Set, r-Scattered Set, k-Clique, and k-Dominating Set when an O(1)-sequence of the graph is given in input. We further show how to solve the weighted version of k-Independent Set, Subgraph Isomorphism, and Induced Subgraph Isomorphism, in the slightly worse running time 2^{O(k log k)}n. Up to logarithmic factors in the exponent, all these running times are optimal, unless the Exponential Time Hypothesis fails. Like our FO model checking algorithm, these new algorithms are based on a dynamic programming scheme following the sequence of contractions forward. We then show a second algorithmic use of the contraction sequence, by starting at its end and rewinding it. As an example of such a reverse scheme, we present a polynomial-time algorithm that properly colors the vertices of a graph with relatively few colors, thereby establishing that bounded twin-width classes are χ-bounded. This significantly extends the χ-boundedness of bounded rank-width classes, and does so with a very concise proof. It readily yields a constant approximation for Max Independent Set on K_t-free graphs of bounded twin-width, and a 2^{O(OPT)}-approximation for Min Coloring on bounded twin-width graphs. We further observe that a constant approximation for Max Independent Set on bounded twin-width graphs (but arbitrarily large clique number) would actually imply a PTAS. The third algorithmic use of twin-width builds on the second one. Playing the contraction sequence backward, we show that bounded twin-width graphs can be edge-partitioned into a linear number of bicliques, such that both sides of the bicliques are on consecutive vertices, in a fixed vertex ordering. This property is trivially shared with graphs of bounded average degree. Given that biclique edge-partition, we show how to solve the unweighted Single-Source Shortest Paths and hence All-Pairs Shortest Paths in time O(n log n) and time O(n² log n), respectively. In sharp contrast, even Diameter does not admit a truly subquadratic algorithm on bounded twin-width graphs, unless the Strong Exponential Time Hypothesis fails. The fourth algorithmic use of twin-width builds on the so-called versatile tree of contractions [Bonnet et al., SODA '21], a branching and more robust witness of low twin-width. We present constant-approximation algorithms for Min Dominating Set and related problems, on bounded twin-width graphs, by showing that the integrality gap is constant. This is done by going down the versatile tree and stopping accordingly to a problem-dependent criterion. At the reached node, a greedy approach yields the desired approximation., LIPIcs, Vol. 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), pages 35:1-35:20
- Published
- 2021
- Full Text
- View/download PDF
17. Twin-width and permutations
- Author
-
Bonnet, Édouard, Nešetřil, Jaroslav, de Mendez, Patrice Ossona, Siebertz, Sebastian, and Thomassé, Stéphan
- Subjects
FOS: Computer and information sciences ,Computer Science - Logic in Computer Science ,Discrete Mathematics (cs.DM) ,FOS: Mathematics ,Mathematics - Combinatorics ,Combinatorics (math.CO) ,Logic in Computer Science (cs.LO) ,Computer Science - Discrete Mathematics - Abstract
Inspired by a width invariant on permutations defined by Guillemot and Marx, Bonnet, Kim, Thomass\'e, and Watrigant introduced the twin-width of graphs, which is a parameter describing its structural complexity. This invariant has been further extended to binary structures, in several (basically equivalent) ways. We prove that a class of binary relational structures (that is: edge-colored partially directed graphs) has bounded twin-width if and only if it is a first-order transduction of a~proper permutation class. As a by-product, we show that every class with bounded twin-width contains at most $2^{O(n)}$ pairwise non-isomorphic $n$-vertex graphs.
- Published
- 2021
18. Testing Balanced Splitting Cycles in Complete Triangulations
- Author
-
Despré, Vincent, Rao, Michaël, Thomassé, Stéphan, Geometric Algorithms and Models Beyond the Linear and Euclidean realm (GAMBLE ), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Modèles de calcul, Complexité, Combinatoire (MC2), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
[INFO]Computer Science [cs] ,embedded graphs ,Computational topology ,randomized algorithm - Abstract
International audience; Let T be a triangulation of an orientable surface Σ of genus g. A cycle C of T is splitting if it cuts Σ into two noncontractible parts Σ 1 and Σ 2 , with respective genus 0 < g 1 ≤ g 2. The splitting cycle C is called balanced if g 1 ≥ g 2 − 1. The complexity of computing a balanced splitting cycle in a given triangulation is open, but seems difficult even for complete triangulations. Our main result in this paper is to show that one can rule out in polynomial time the existence of a balanced splitting cycle when the triangulation is ε-far to have one. Implementing this algorithm, we show that large Ringel and Youngs triangulations (for instance on 22.363 vertices) have no balanced splitting cycle, the only limitation being the size of the input rather than the computation time.
- Published
- 2020
- Full Text
- View/download PDF
19. When Maximum Stable Set can be solved in FPT time
- Author
-
Bonnet, Edouard, Bousquet, Nicolas, Thomassé, Stéphan, Watrigant, Rémi, Modèles de calcul, Complexité, Combinatoire (MC2), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Graphes, AlgOrithmes et AppLications (GOAL), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
FOS: Computer and information sciences ,000 Computer science, knowledge, general works ,H-Free Graphs ,Discrete Mathematics (cs.DM) ,Independent Set ,0102 computer and information sciences ,02 engineering and technology ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,Computational Complexity (cs.CC) ,01 natural sciences ,Computer Science - Computational Complexity ,010201 computation theory & mathematics ,and phrases Parameterized Algorithms ,Computer Science::Discrete Mathematics ,Computer Science - Data Structures and Algorithms ,Computer Science ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,Data Structures and Algorithms (cs.DS) ,F.2.2 ,Computer Science - Discrete Mathematics ,MathematicsofComputing_DISCRETEMATHEMATICS - Abstract
International audience; Maximum Independent Set (MIS for short) is in general graphs the paradigmatic W [1]-hard problem. In stark contrast, polynomial-time algorithms are known when the inputs are restricted to structured graph classes such as, for instance, perfect graphs (which includes bipartite graphs, chordal graphs, co-graphs, etc.) or claw-free graphs. In this paper, we introduce some variants of co-graphs with parameterized noise, that is, graphs that can be made into disjoint unions or complete sums by the removal of a certain number of vertices and the addition/deletion of a certain number of edges per incident vertex, both controlled by the parameter. We give a series of FPT Turing-reductions on these classes and use them to make some progress on the parameterized complexity of MIS in H-free graphs. We show that for every fixed t 1, MIS is FPT in P (1, t, t, t)-free graphs, where P (1, t, t, t) is the graph obtained by substituting all the vertices of a four-vertex path but one end of the path by cliques of size t. We also provide randomized FPT algorithms in dart-free graphs and in cricket-free graphs. This settles the FPT/W[1]-hard dichotomy for five-vertex graphs H. 2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of computation → Fixed parameter tractability
- Published
- 2019
- Full Text
- View/download PDF
20. Maximum independent sets in (pyramid, even hole)-free graphs
- Author
-
Chudnovsky, Maria, Thomassé, Stéphan, Trotignon, Nicolas, Vušković, Kristina, Columbia University [New York], Laboratoire de Probabilités, Combinatoire et Statistique (LAPCS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Modèles de calcul, Complexité, Combinatoire (MC2), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), School of Computing [Leeds], University of Leeds, ANR-19-CE48-0013,DIGRAPHS,Digraphes(2019), ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010), Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
FOS: Computer and information sciences ,Discrete Mathematics (cs.DM) ,FOS: Mathematics ,Mathematics - Combinatorics ,Combinatorics (math.CO) ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,Computer Science - Discrete Mathematics - Abstract
A \emph{hole} in a graph is an induced cycle with at least 4 vertices. A graph is \emph{even-hole-free} if it does not contain a hole on an even number of vertices. A \emph{pyramid} is a graph made of three chordless paths $P_1 = a \dots b_1$, $P_2 = a \dots b_2$, $P_3 = a \dots b_3$ of length at least~1, two of which have length at least 2, vertex-disjoint except at $a$, and such that $b_1b_2b_3$ is a triangle and no edges exist between the paths except those of the triangle and the three edges incident with $a$. We give a polynomial time algorithm to compute a maximum weighted independent set in a even-hole-free graph that contains no pyramid as an induced subgraph. Our result is based on a decomposition theorem and on bounding the number of minimal separators. All our results hold for a slightly larger class of graphs, the class of (square, prism, pyramid, theta, even wheel)-free graphs.
- Published
- 2019
- Full Text
- View/download PDF
21. Edge-decomposing graphs into coprime forests
- Author
-
Klimošová, Tereza and Thomassé, Stéphan
- Subjects
FOS: Computer and information sciences ,Discrete Mathematics (cs.DM) ,FOS: Mathematics ,Mathematics - Combinatorics ,Combinatorics (math.CO) ,Computer Science - Discrete Mathematics - Abstract
The Barat-Thomassen conjecture, recently proved in [Bensmail et al.: A proof of the Barat-Thomassen conjecture. J. Combin. Theory Ser. B, 124:39-55, 2017.], asserts that for every tree T, there is a constant $c_T$ such that every $c_T$-edge connected graph G with number of edges (size) divisible by the size of T admits an edge partition into copies of T (a T-decomposition). In this paper, we investigate in which case the connectivity requirement can be dropped to a minimum degree condition. For instance, it was shown in [Bensmail et al.: Edge-partitioning a graph into paths: beyond the Barat-Thomassen conjecture. arXiv:1507.08208] that when T is a path with k edges, there is a constant $d_k$ such that every 24-edge connected graph G with size divisible by k and minimum degree $d_k$ has a T-decomposition. We show in this paper that when F is a coprime forest (the sizes of its components being a coprime set of integers), any graph G with sufficiently large minimum degree has an F-decomposition provided that the size of F divides the size of G (no connectivity is required). A natural conjecture asked in [Bensmail et al.: Edge-partitioning a graph into paths: beyond the Barat-Thomassen conjecture. arXiv:1507.08208] asserts that for a fixed tree T, any graph G of size divisible by the size of T with sufficiently high minimum degree has a T-decomposition, provided that G is sufficiently highly connected in terms of the maximal degree of T. The case of maximum degree 2 is answered by paths. We provide a counterexample to this conjecture in the case of maximum degree 3.
- Published
- 2018
- Full Text
- View/download PDF
22. Subdivisions in digraphs of large out-degree or large dichromatic number *
- Author
-
Aboulker, Pierre, Cohen, Nathann, Havet, Frédéric, Lochet, William, Moura, Phablo, Thomassé, Stéphan, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Combinatorics, Optimization and Algorithms for Telecommunications (COATI), COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences sociales du Politique (ISP), École normale supérieure - Cachan (ENS Cachan)-Université Paris Nanterre (UPN)-Centre National de la Recherche Scientifique (CNRS), INRIA Sophia Antipolis - I3S, ANR-13-BS02-0007,Stint,Structures Interdites(2013), Université Nice Sophia Antipolis (1965 - 2019) (UNS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), and École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
Computer Science::Discrete Mathematics ,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] - Abstract
In 1985, Mader conjectured the existence of a function f such that every digraph with minimum out-degree at least f (k) contains a subdivision of the transitive tournament of order k. This conjecture is still completely open, as the existence of f (5) remains unknown. In this paper, we show that if D is an oriented path, or an in-arborescence (i.e., a tree with all edges oriented towards the root) or the union of two directed paths from x to y and a directed path from y to x, then every digraph with minimum out-degree large enough contains a subdivision of D. Additionally, we study Mader's conjecture considering another graph parameter. The dichromatic number of a digraph D is the smallest integer k such that D can be partitioned into k acyclic subdigraphs. We show that any digraph with dichromatic number greater than 4 m (n − 1) contains every digraph with n vertices and m arcs as a subdivision.
- Published
- 2016
23. A Proof of the Bar\'at-Thomassen Conjecture
- Author
-
Bensmail, Julien, Harutyunyan, Ararat, Le, Tien-Nam, Merker, Martin, and Thomassé, Stéphan
- Subjects
Mathematics - Combinatorics ,High Energy Physics::Experiment - Abstract
The Bar\'at-Thomassen conjecture asserts that for every tree $T$ on $m$ edges, there exists a constant $k_T$ such that every $k_T$-edge-connected graph with size divisible by $m$ can be edge-decomposed into copies of $T$. So far this conjecture has only been verified when $T$ is a path or when $T$ has diameter at most 4. Here we prove the full statement of the conjecture., Comment: 16 pages
- Published
- 2016
24. Complexity of (p,1)-total labelling
- Author
-
Havet, Frédéric and Thomassé, Stéphan
- Subjects
Applied Mathematics ,Discrete Mathematics and Combinatorics - Published
- 2009
- Full Text
- View/download PDF
25. Edge-partitioning a graph into paths: beyond the Bar\'at-Thomassen conjecture
- Author
-
Bensmail, Julien, Harutyunyan, Ararat, Le, Tien-Nam, and Thomassé, Stéphan
- Subjects
Mathematics - Combinatorics - Abstract
The Bar\'at-Thomassen conjecture asserts that there is a function $f$ such that for every fixed tree $T$ with $t$ edges, every graph which is $f(t)$-edge-connected with its number of edges divisible by $t$ has a partition of its edges into copies of $T$. This has been proved in the case of paths of length $2^k$ by Thomassen, and recently shown to be true for all paths by Botler, Mota, Oshiro and Wakabayashi. Our goal in this paper is to propose an alternative proof of the path case with a weaker hypothesis: Namely, we prove that there is a function $f$ such that every $24$-edge-connected graph with minimum degree $f(t)$ has an edge-partition into paths of length $t$ whenever $t$ divides the number of edges. We also show that $24$ can be dropped to $4$ when the graph is eulerian.
- Published
- 2015
26. VC-dimension and Erd\H{o}s-P\'osa property
- Author
-
Bousquet, Nicolas and Thomassé, Stéphan
- Subjects
Mathematics - Combinatorics ,Computer Science - Discrete Mathematics - Abstract
Let $G=(V,E)$ be a graph. A $k$-neighborhood in $G$ is a set of vertices consisting of all the vertices at distance at most $k$ from some vertex of $G$. The hypergraph on vertex set $V$ which edge set consists of all the $k$-neighborhoods of $G$ for all $k$ is the neighborhood hypergraph of $G$. Our goal in this paper is to investigate the complexity of a graph in terms of its neighborhoods. Precisely, we define the distance VC-dimension of a graph $G$ as the maximum taken over all induced subgraphs $G'$ of $G$ of the VC-dimension of the neighborhood hypergraph of $G'$. For a class of graphs, having bounded distance VC-dimension both generalizes minor closed classes and graphs with bounded clique-width. Our motivation is a result of Chepoi, Estellon and Vax\`es asserting that every planar graph of diameter $2\ell$ can be covered by a bounded number of balls of radius $\ell$. In fact, they obtained the existence of a function $f$ such that every set $\cal F$ of balls of radius $\ell$ in a planar graph admits a hitting set of size $f(\nu)$ where $\nu$ is the maximum number of pairwise disjoint elements of $\cal F$. Our goal is to generalize the proof of Chepoi, Estellon and Vax\`es with the unique assumption of bounded distance VC-dimension of neighborhoods. In other words, the set of balls of fixed radius in a graph with bounded distance VC-dimension has the Erd\H{o}s-P\'osa property.
- Published
- 2014
27. Graphs with large chromatic number induce $3k$-cycles
- Author
-
Bonamy, Marthe, Thomassé, Stéphan, Charbit, Pierre, Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Networks, Graphs and Algorithms (GANG), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université Sciences et Technologies - Bordeaux 1-Université Bordeaux Segalen - Bordeaux 2, and École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
FOS: Computer and information sciences ,Mathematics::Combinatorics ,Discrete Mathematics (cs.DM) ,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] ,FOS: Mathematics ,Mathematics - Combinatorics ,Combinatorics (math.CO) ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,Computer Science - Discrete Mathematics - Abstract
Answering a question of Kalai and Meshulam, we prove that graphs without induced cycles of length $3k$ have bounded chromatic number. This implies the very first case of a much broader question asserting that every graph with large chromatic number induces a graph $H$ such that the sum of the Betti numbers of the independence complex of $H$ is also large., 13 pages
- Published
- 2014
28. The Erd\H{o}s-Hajnal Conjecture for Long Holes and Anti-holes
- Author
-
Bonamy, Marthe, Bousquet, Nicolas, Thomassé, Stéphan, Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), Optimisation Combinatoire (G-SCOP_OC ), Laboratoire des sciences pour la conception, l'optimisation et la production (G-SCOP), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire de l'Informatique du Parallélisme (LIP), Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Bonamy, Marthe
- Subjects
[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO] ,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM] ,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] ,Mathematics - Combinatorics ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,Computer Science - Discrete Mathematics - Abstract
Erd\H{o}s and Hajnal conjectured that, for every graph $H$, there exists a constant $c_H$ such that every graph $G$ on $n$ vertices which does not contain any induced copy of $H$ has a clique or a stable set of size $n^{c_H}$. We prove that for every $k$, there exists $c_k>0$ such that every graph $G$ on $n$ vertices not inducing a cycle of length at least $k$ nor its complement contains a clique or a stable set of size $n^{c_k}$., Comment: 6 pages, submitted
- Published
- 2014
29. Multicut is FPT
- Author
-
Bousquet, Nicolas, Daligault, Jean, Thomassé, Stéphan, Algorithmes, Graphes et Combinatoire (ALGCO), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), and ANR-09-BLAN-0159,AGAPE,Algorithmes de graphes parametres et exacts(2009)
- Subjects
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] - Abstract
International audience; Let G=(V,E) be a graph on n vertices and R be a set of pairs of vertices in V called requests. A multicut is a subset F of E such that every request xy of R is cut by F, i.e. every xy-path of G intersects F. We show that there exists an O(f(k)nc) algorithm which decides if there exists a multicut of size at most k. In other words, the Multicut problem parameterized by the solution size k is Fixed-Parameter Tractable.
- Published
- 2012
30. Multicut is FPT
- Author
-
Bousquet, Nicolas, Daligault, Jean, Thomassé, Stéphan, Algorithmes, Graphes et Combinatoire (ALGCO), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), and ANR-09-BLAN-0159,AGAPE,Algorithmes de graphes parametres et exacts(2009)
- Subjects
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] - Abstract
International audience; Let G=(V,E) be a graph on n vertices and R be a set of pairs of vertices in V called requests. A multicut is a subset F of E such that every request xy of R is cut by F, i.e. every xy-path of G intersects F. We show that there exists an O(f(k)nc) algorithm which decides if there exists a multicut of size at most k. In other words, the Multicut problem parameterized by the solution size k is Fixed-Parameter Tractable.
- Published
- 2012
31. Conflict Packing: an unifying technique to obtain polynomial kernels for editing problems on dense instances
- Author
-
Paul, Christophe, Perez, Anthony, and Thomassé, Stéphan
- Subjects
FOS: Computer and information sciences ,Computer Science - Data Structures and Algorithms ,Data Structures and Algorithms (cs.DS) - Abstract
We develop a technique that we call Conflict Packing in the context of kernelization, obtaining (and improving) several polynomial kernels for editing problems on dense instances. We apply this technique on several well-studied problems: Feedback Arc Set in (Bipartite) Tournaments, Dense Rooted Triplet Inconsistency and Betweenness in Tournaments. For the former, one is given a (bipartite) tournament $T = (V,A)$ and seeks a set of at most $k$ arcs whose reversal in $T$ results in an acyclic (bipartite) tournament. While a linear vertex-kernel is already known for the first problem, using the Conflict Packing allows us to find a so-called safe partition, the central tool of the kernelization algorithm in, with simpler arguments. For the case of bipartite tournaments, the same technique allows us to obtain a quadratic vertex-kernel. Again, such a kernel was already known to exist, using the concept of so-called bimodules. We believe however that providing an unifying technique to cope with such problems is interesting. Regarding Dense Rooted Triplet Inconsistency, one is given a set of vertices $V$ and a dense collection $\mathcal{R}$ of rooted binary trees over three vertices of $V$ and seeks a rooted tree over $V$ containing all but at most $k$ triplets from $\mathcal{R}$. As a main consequence of our technique, we prove that the Dense Rooted Triplet Inconsistency problem admits a linear vertex-kernel. This result improves the best known bound of $O(k^2)$ vertices for this problem. Finally, we use this technique to obtain a linear vertex-kernel for Betweenness in Tournaments, where one is given a set of vertices $V$ and a dense collection $\mathcal{R}$ of so-called betweenness triplets and seeks a linear ordering of the vertices containing all but at most $k$ triplets from $\mathcal{R}$.
- Published
- 2011
- Full Text
- View/download PDF
32. Oriented trees in digraphs
- Author
-
Addario-Berry, Louigi, Havet, Frédéric, Linhares Sales, Claudia, Reed, Bruce, Thomassé, Stéphan, Department of Mathematics and Statistics [Montréal], McGill University = Université McGill [Montréal, Canada], Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Parallelism, Graphs and Optimization Research Group (ParGO), Universidade Federal do Ceará = Federal University of Ceará (UFC), Algorithmes, Graphes et Combinatoire (ALGCO), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Equipe associee INRIA EWIN, INRIA, ANR-09-BLAN-0159,AGAPE,Algorithmes de graphes parametres et exacts(2009), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
orientation of graphs ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,universaldigraph ,digraph colouring - Abstract
Let f (k) be the smallest integer such that every f (k)-chromatic digraph contains every oriented tree of order k. Burr proved that f (k) ≤ (k − 1)^2 and conjectured f (k) = 2n − 2. In this paper, we give some sufficient conditions for an n-chromatic digraphs to contains some oriented tree. In particular, we show that every acyclic n-chromatic digraph contains every oriented tree of order n. We also show that f (k) ≤ k^2/2 − k/2 + 1. Finally, we consider the existence of antidirected trees in digraphs. We prove that every antidirected tree of order k is containedinevery(5k−9)-chromaticdigraph. Weconjecturethatif|E(D)|>(k−2)|V(D)|,thenthedigraph D contains every antidirected tree of order k. This generalizes Burr's conjecture for antidirected trees and the celebrated Erdo ̋s-So ́s Conjecture. We give some evidences for our conjecture to be true.
- Published
- 2011
33. Simultaneously Satisfying Linear Equations Over F_2: MaxLin2 and Max-r-Lin2 Parameterized Above Average
- Author
-
Crowston, Robert, Fellows, Michael, Gutin, Gregory, Jones, Mark, Rosamond, Frances, Thomassé, Stéphan, and Yeo, Anders
- Subjects
000 Computer science, knowledge, general works ,Computer Science - Abstract
In the parameterized problem MaxLin2-AA[$k$], we are given a system with variables x_1,...,x_n consisting of equations of the form Product_{i in I}x_i = b, where x_i,b in {-1, 1} and I is a nonempty subset of {1,...,n}, each equation has a positive integral weight, and we are to decide whether it is possible to simultaneously satisfy equations of total weight at least W/2+k, where W is the total weight of all equations and k is the parameter (if k=0, the possibility is assured). We show that MaxLin2-AA[k] has a kernel with at most O(k^2 log k) variables and can be solved in time 2^{O(k log k)}(nm)^{O(1)}. This solves an open problem of Mahajan et al. (2006). The problem Max-r-Lin2-AA[k,r] is the same as MaxLin2-AA[k] with two differences: each equation has at most r variables and r is the second parameter. We prove a theorem on Max-$r$-Lin2-AA[k,r] which implies that Max-r-Lin2-AA[k,r] has a kernel with at most (2k-1)r variables, improving a number of results including one by Kim and Williams (2010). The theorem also implies a lower bound on the maximum of a function f that maps {-1,1}^n to the set of reals and whose Fourier expansion (which is a multilinear polynomial) is of degree r. We show applicability of the lower bound by giving a new proof of the Edwards-Erdös bound (each connected graph on n vertices and m edges has a bipartite subgraph with at least m/2 +(n-1)/4 edges) and obtaining a generalization.
- Published
- 2011
- Full Text
- View/download PDF
34. Multicut is FPT
- Author
-
Bousquet, Nicolas, Daligault, Jean, and Thomassé, Stéphan
- Subjects
Computer Science::Discrete Mathematics ,Computer Science - Data Structures and Algorithms - Abstract
Let $G=(V,E)$ be a graph on $n$ vertices and $R$ be a set of pairs of vertices in $V$ called \emph{requests}. A \emph{multicut} is a subset $F$ of $E$ such that every request $xy$ of $R$ is cut by $F$, \i.e. every $xy$-path of $G$ intersects $F$. We show that there exists an $O(f(k)n^c)$ algorithm which decides if there exists a multicut of size at most $k$. In other words, the \M{} problem parameterized by the solution size $k$ is Fixed-Parameter Tractable. The proof extends to vertex multicuts.
- Published
- 2010
35. Edge Growth in Graph Cubes
- Author
-
DeVos, Matt and Thomassé, Stéphan
- Subjects
FOS: Computer and information sciences ,Discrete Mathematics (cs.DM) ,FOS: Mathematics ,Mathematics - Combinatorics ,Combinatorics (math.CO) ,Computer Science - Discrete Mathematics - Abstract
We show that for every connected graph $G$ of diameter $\ge 3$, the graph $G^3$ has average degree $\ge 7/4 \delta(G)$. We also provide an example showing that this bound is best possible. This resolves a question of Hegarty \cite{PH}.
- Published
- 2010
- Full Text
- View/download PDF
36. Coloring dense graphs via VC-dimension
- Author
-
Łuczak, Tomasz and Thomassé, Stéphan
- Subjects
Mathematics::Combinatorics ,05C35 (Primary) 05C15, 05C60, 68Q32 (Secondary) ,FOS: Mathematics ,Mathematics - Combinatorics ,Combinatorics (math.CO) - Abstract
The Vapnik-\v{C}ervonenkis dimension is a complexity measure of set-systems, or hypergraphs. Its application to graphs is usually done by considering the sets of neighborhoods of the vertices (cf. Alon et al. (2006) and Chepoi, Estellon, and Vaxes (2007)), hence providing a set-system. But the graph structure is lost in the process. The aim of this paper is to introduce the notion of paired VC-dimension, a generalization of VC-dimension to set-systems endowed with a graph structure, hence a collection of pairs of subsets. The classical VC-theory is generally used in combinatorics to bound the transversality of a hypergraph in terms of its fractional transversality and its VC-dimension. Similarly, we bound the chromatic number in terms of fractional transversality and paired VC-dimension. This approach turns out to be very useful for a class of problems raised by Erd\H{o}s and Simonovits (1973) asking for H-free graphs with minimum degree at least cn and arbitrarily high chromatic number, where H is a fixed graph and c a positive constant. We show how the usual VC-dimension gives a short proof of the fact that triangle-free graphs with minimum degree at least n/3 have bounded chromatic number, where $n$ is the number of vertices. Using paired VC-dimension, we prove that if the chromatic number of $H$-free graphs with minimum degree at least cn is unbounded for some positive c, then it is unbounded for all c
- Published
- 2010
- Full Text
- View/download PDF
37. Kernelization via Combinatorial Optimization
- Author
-
Thomassé, Stéphan, Algorithmes, Graphes et Combinatoire (ALGCO), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), and Thomasse, Stephan
- Subjects
[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC] ,[INFO.INFO-CC] Computer Science [cs]/Computational Complexity [cs.CC] ,MathematicsofComputing_DISCRETEMATHEMATICS - Abstract
International audience; A graph parameter $\pi$ has {\it polynomial kernelization} if there exists an algorithm which has input a pair $(G,k)$ where $G$ is a graph of size $n$ and $k$ is an integer and outputs $(G',k')$ where $\pi(G)\leq k$ iff $\pi(G')\leq k'$, and $G'$ has size polynomial in $k$. Moreover the running time of the algorithm is $O(n^c)$ for some constant $c$. Roughly speaking, there exists an efficient preprocess of the instance $(G,k)$ which compress it into a instance of size polynomial in $k$. For example Vertex Cover in graphs can be kernelized to size $2k$, Feedback Vertex Set to size $4k2$, etc. The goal is to find a minimum size kernel. The design of kernelization algorithms heavily relies on combinatorial optimization tools applied to a substructure called {\it crown decomposition}. I will present some algorithms based on matchings, convex embeddings, hypergraphic matroids, $A$-disjoint paths,...
- Published
- 2009
38. Branchwidth of Graphic Matroids
- Author
-
Thomassé, Stéphan, Algorithmes, Graphes et Combinatoire (ALGCO), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), and Thomasse, Stephan
- Subjects
[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO] ,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] - Abstract
International audience; Branchwidth of Graphs and Matroids were introduced by Robertson and Seymour in their Graph Minor X paper. In 2002, Geelen, Gerards, Robertson and Whittle asked whether the branchwidth of a bridgeless graph is equal to the branchwidth of its cycle matroid. With Frederic Mazoit, we give a positive answer to this question. A straightforward corollary being that the branchwidth of a planar bridgeless graph is equal to the branchwidth of its dual.
- Published
- 2008
39. The Hoàng-Reed Conjecture holds for tournaments
- Author
-
Havet, Frédéric, Thomassé, Stéphan, Yeo, Anders, Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Algorithmes, Graphes et Combinatoire (ALGCO), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Department of Computer Science, Royal Holloway [University of London] (RHUL), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; See pdf
- Published
- 2008
- Full Text
- View/download PDF
40. Cyclic Orderings of Matroids
- Author
-
Thomassé, Stéphan, Algorithmes, Graphes et Combinatoire (ALGCO), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] - Abstract
International audience; Answering a question Kajitani \emph{et al} and Wiedemann, we prove that if $B_1,\ldots,B_k$ are bases of a matroid of rank~$r$, then the list of $k\cdot r$ elements of these bases has a cyclic ordering in which every cyclic interval of~$r$ elements is a base. The following particular case of this question was already known: If an $n$-vertex graph $G$ is the (edge) union of two spanning trees, the edges of $G$ can be cyclically enumerated in such a way that every cyclic interval of $n-1$ edges is a tree. We therefore extend this result for more than two trees, and for general bases of matroids. Althought this result would suggest the introduction of some stronger exchange axiom (the existence of a linear, instead of cyclic, ordering indeed follows from the usual exchange axiom), it turns out that the proof is based on a fractional approach. Indeed for matroids, the fractional chromatic number is equal to the circular chromatic number. The proof of this result, conjectured by Gonçalves, turns out to be the key of the existence of cyclic orderings. We will conclude this talk by a discussion on open problems in the area, focusing on two conjectures of Rota and Gabow.
- Published
- 2007
41. Complexity of $(p,1)$-total labelling
- Author
-
Havet, Frédéric, Thomassé, Stéphan, Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Algorithmes, Graphes et Combinatoire (ALGCO), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), The first author is partially supported by the European project FET-AEOLUS, INRIA, Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
Total labelling ,distance constrained colouring ,total colouring ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] - Abstract
A {\it $(p,1)$-total labelling} of a graph $G=(V,E)$ is a total coloring $L$ from $V\cup E$ into $\{0,\dots ,l\}$ such that $|L(v)-L(e)|\geq p$ whenever an edge $e$ is incident to a vertex $v$. The minimum $l$ for which $G$ admits a $(p,1)$-total labelling is denoted by $\lambda_p(G)$. The case $p=1$ corresponds to the usual notion of total colouring, which is NP-hard to calculate even for cubic bipartite graphs~\cite{MDSA94}. We assume $p\geq 2$ in this paper. It is easy to show that $\lambda_p(G)\geq \Delta +p-1$, where $\Delta$ is the maximum degree of $G$. Moreover, when $G$ is bipartite, $\Delta +p$ is an upper bound for $\lambda_p(G)$, leaving only two possible values. In this paper, we completely settle the computational complexity of deciding whether $\lambda_p(G)$ is equal to $\Delta +p-1$ or to $\Delta +p$ when $G$ is bipartite. This is trivial when $\Delta \leq p$, polynomial when $\Delta =3$ and $p=2$, and NP-complete in the remaining cases.
- Published
- 2007
42. Hoàng-Reed conjecture holds for tournaments
- Author
-
Havet, Frédéric, Thomassé, Stéphan, Yeo, Anders, Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Department of Computer Science, Royal Holloway [University of London] (RHUL), INRIA, Université Nice Sophia Antipolis (1965 - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
- Subjects
Computer Science::Discrete Mathematics ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,circuit ,forest-like structure ,tournament - Abstract
Hoàng-Reed conjecture asserts that every digraph $D$ has a collection $\cal C$ of circuits $C_1,\dots,C_{\delta ^+}$, where $\delta ^+$ is the minimum outdegree of $D$, such that the circuits of $\cal C$ have a forest-like structure. Formally, $|V(C_i)\cap (V(C_1)\cup \dots \cup V(C_{i-1}))|\leq 1$, for all $i=2,\dots ,\delta^+$. We verify this conjecture for the class of tournaments.
- Published
- 2006
43. Branchwidth of graphic matroids
- Author
-
Mazoit, Frédéric, Thomassé, Stéphan, Laboratoire d'informatique Fondamentale de Marseille - UMR 6166 (LIF), Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS), Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Université Nice Sophia Antipolis (... - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
- Subjects
Mathematics::Combinatorics ,Computer Science::Discrete Mathematics ,graphic matroid ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,branchwidth - Abstract
Answering a question of Geelen, Gerards, Robertson and Whittle, we prove that the branchwidth of a bridgeless graph is equal to the branch- width of its cycle matroid. Our proof is based on branch-decompositions of hypergraph.
- Published
- 2005
44. Preface
- Author
-
Hahn, Geňa, Ille, Pierre, and Thomassé, Stéphan
- Subjects
Discrete Mathematics and Combinatorics ,Theoretical Computer Science - Published
- 2005
- Full Text
- View/download PDF
45. Paths with two blocks in $n$-chromatic digraphs
- Author
-
Addario-Berry, Louigi, Thomassé, Stéphan, Havet, Frédéric, Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Laboratoire de Probabilités, Combinatoire et Statistique (LAPCS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Partially supported by the European project FET-CRESCCO, INRIA, Université Nice Sophia Antipolis (1965 - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
- Subjects
UNIVERSAL ,Mathematics::Combinatorics ,Computer Science::Discrete Mathematics ,[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] ,PATH ,UNAVOIDABLE ,CHROMATIC NUMBER - Abstract
We show that every oriented path of order $n\geq4$ with two blocks is contained in every $n$-chromatic digraph.
- Published
- 2005
46. An Algorithmic Weakening of the Erdős-Hajnal Conjecture
- Author
-
Stéphan Thomassé, Edouard Bonnet, Rémi Watrigant, Xuan Thang Tran, Modèles de calcul, Complexité, Combinatoire (MC2), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), ENS Lyon, Université de Lyon, École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Thomassé, Stéphan
- Subjects
Erdős-Hajnal conjecture ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,H-free Graphs ,Theory of computation → Approximation algorithms analysis ,Maximum Independent Set ,Computer Science - Computational Complexity ,Theory of computation → Graph algorithms analysis ,Computer Science - Data Structures and Algorithms ,68Q25, 68Q17, 68R10 ,F.2.2 ,Approximation ,ComputingMilieux_MISCELLANEOUS ,Computer Science - Discrete Mathematics - Abstract
We study the approximability of the Maximum Independent Set (MIS) problem in $H$-free graphs (that is, graphs which do not admit $H$ as an induced subgraph). As one motivation we investigate the following conjecture: for every fixed graph $H$, there exists a constant $\delta > 0$ such that MIS can be $n^{1 - \delta}$-approximated in $H$-free graphs, where $n$ denotes the number of vertices of the input graph. We first prove that a constructive version of the celebrated Erd\H{o}s-Hajnal conjecture implies ours. We then prove that the set of graphs $H$ satisfying our conjecture is closed under the so-called graph substitution. This, together with the known polynomial-time algorithms for MIS in $H$-free graphs (e.g. $P_6$-free and fork-free graphs), implies that our conjecture holds for many graphs $H$ for which the Erd\H{o}s-Hajnal conjecture is still open. We then focus on improving the constant $\delta$ for some graph classes: we prove that the classical Local Search algorithm provides an $OPT^{1-\frac{1}{t}}$-approximation in $K_{t,t}$-free graphs (hence a $\sqrt{OPT}$-approximation in $C_4$-free graphs), and, while there is a simple $\sqrt{n}$-approximation in triangle-free graphs, it cannot be improved to $n^{\frac{1}{4}-\varepsilon}$ for any $\varepsilon > 0$ unless $NP \subseteq BPP$. More generally, we show that there is a constant $c$ such that MIS in graphs of girth $\gamma$ cannot be $n^{\frac{c}{\gamma}}$-approximated. Up to a constant factor in the exponent, this matches the ratio of a known approximation algorithm by Monien and Speckenmeyer, and by Murphy. To the best of our knowledge, this is the first strong (i.e., $\Omega(n^\delta)$ for some $\delta > 0$) inapproximability result for Maximum Independent Set in a proper hereditary class.
- Published
- 2020
47. Coloring Dense Digraphs
- Author
-
Stéphan Thomassé, Tien-Nam Le, Ararat Harutyunyan, Alantha Newman, Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Modèles de calcul, Complexité, Combinatoire (MC2), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Optimisation Combinatoire (G-SCOP_OC ), Laboratoire des sciences pour la conception, l'optimisation et la production (G-SCOP), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Thomassé, Stéphan, Université Paris sciences et lettres (PSL), École normale supérieure de Lyon (ENS de Lyon), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)
- Subjects
Vertex (graph theory) ,0102 computer and information sciences ,[INFO] Computer Science [cs] ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,01 natural sciences ,Combinatorics ,Physics::Popular Physics ,Computer Science::Discrete Mathematics ,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] ,FOS: Mathematics ,Mathematics - Combinatorics ,Discrete Mathematics and Combinatorics ,HERO ,Tournament ,[INFO]Computer Science [cs] ,Chromatic scale ,[MATH]Mathematics [math] ,0101 mathematics ,Computer Science::Data Structures and Algorithms ,ComputingMilieux_MISCELLANEOUS ,Independence number ,Mathematics ,Discrete mathematics ,Conjecture ,Mathematics::Combinatorics ,Applied Mathematics ,010102 general mathematics ,Digraph ,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM] ,Computational Mathematics ,010201 computation theory & mathematics ,Bounded function ,Erdős–Hajnal conjecture ,Combinatorics (math.CO) - Abstract
The chromatic number of a digraph $D$ is the minimum number of acyclic subgraphs covering the vertex set of $D$. A tournament $H$ is a hero if every $H$-free tournament $T$ has chromatic number bounded by a function of $H$. Inspired by the celebrated Erd\H{o}s--Hajnal conjecture, Berger et al. fully characterized the class of heroes in 2013. We extend this framework to dense digraphs: A digraph $H$ is a superhero if every $H$-free digraph $D$ has chromatic number bounded by a function of $H$ and $\alpha(D)$, the independence number of the underlying graph of $D$. We prove here that a digraph is a superhero if and only if it is a hero, and hence characterize all superheroes. This answers a question of Aboulker, Charbit and Naserasr., Comment: 27 pages, 0 figure
- Published
- 2019
- Full Text
- View/download PDF
48. Domination in tournaments
- Author
-
Ringi Kim, Paul Seymour, Stéphan Thomassé, Chun-Hung Liu, Maria Chudnovsky, Department of Mathematics - Princeton University, Princeton University, Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Modèles de calcul, Complexité, Combinatoire (MC2), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Thomassé, Stéphan, École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
Vertex (graph theory) ,Discrete mathematics ,Transitive relation ,Conjecture ,Domination analysis ,010102 general mathematics ,0102 computer and information sciences ,[INFO] Computer Science [cs] ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,01 natural sciences ,Theoretical Computer Science ,Combinatorics ,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM] ,Computational Theory and Mathematics ,Computer Science::Discrete Mathematics ,010201 computation theory & mathematics ,Bounded function ,Discrete Mathematics and Combinatorics ,Tournament ,[INFO]Computer Science [cs] ,0101 mathematics ,ComputingMilieux_MISCELLANEOUS ,Shattered set ,Mathematics - Abstract
We investigate the following conjecture of Hehui Wu: for every tournament S, the class of S-free tournaments has bounded domination number. We show that the conjecture is false in general, but true when S is 2-colourable (that is, its vertex set can be partitioned into two transitive sets); the latter follows by a direct application of VC-dimension. Our goal is to go beyond this; we give a non-2-colourable tournament S that satisfies the conjecture. The key ingredient here (perhaps more interesting than the result itself) is that we overcome the unboundedness of the VC-dimension by showing that the set of shattered sets is sparse.
- Published
- 2018
49. Using SPQR-trees to speed up algorithms based on 2-cutset decompositions
- Author
-
Nicolas Trotignon, H.B. de Macedo Filho, Z. Li, Raphael C. S. Machado, C.M.H. de Figueiredo, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE-UFRJ), Universidade Federal do Rio de Janeiro (UFRJ), Laboratoire d'informatique de l'école normale supérieure (LIENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), National Institute of Metrology, Quality and Technology [Rio de Janeiro] (Inmetro ), Modèles de calcul, Complexité, Combinatoire (MC2), Laboratoire de l'Informatique du Parallélisme (LIP), Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Thomassé, Stéphan
- Subjects
Block graph ,SPQR tree ,Applied Mathematics ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,Voltage graph ,[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,[INFO] Computer Science [cs] ,Tree decomposition ,law.invention ,Pathwidth ,law ,Line graph ,Discrete Mathematics and Combinatorics ,Graph (abstract data type) ,[INFO]Computer Science [cs] ,Algorithm ,ComputingMilieux_MISCELLANEOUS ,Implicit graph ,MathematicsofComputing_DISCRETEMATHEMATICS ,Mathematics - Abstract
We propose the use of SPQR-trees as a data structure to encode the 3-connected components of a graph and to obtain linear-time recognition algorithms for graph classes structurally characterized by 2-cutset decompositions.
- Published
- 2015
- Full Text
- View/download PDF
50. Domination and fractional domination in digraphs
- Author
-
Alantha Newman, Tien-Nam Le, Ararat Harutyunyan, Stéphan Thomassé, Thomassé, Stéphan, Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Modèles de calcul, Complexité, Combinatoire (MC2), Laboratoire de l'Informatique du Parallélisme (LIP), Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Optimisation Combinatoire (G-SCOP_OC ), Laboratoire des sciences pour la conception, l'optimisation et la production (G-SCOP), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Domination analysis ,Applied Mathematics ,010102 general mathematics ,Digraph ,0102 computer and information sciences ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,[INFO] Computer Science [cs] ,16. Peace & justice ,01 natural sciences ,Graph ,Theoretical Computer Science ,Combinatorics ,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM] ,Computational Theory and Mathematics ,010201 computation theory & mathematics ,FOS: Mathematics ,Discrete Mathematics and Combinatorics ,Mathematics - Combinatorics ,[INFO]Computer Science [cs] ,Geometry and Topology ,Combinatorics (math.CO) ,0101 mathematics ,Mathematics ,Independence number - Abstract
In this paper, we investigate the relation between the (fractional) domination number of a digraph $G$ and the independence number of its underlying graph, denoted by $\alpha(G)$. More precisely, we prove that every digraph $G$ has fractional domination number at most $2\alpha(G)$, and every directed triangle-free digraph $G$ has domination number at most $\alpha(G)\cdot \alpha(G)!$. The first bound is sharp., Comment: 11 pages, no figure
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.