321 results on '"Wang, Xiaolin"'
Search Results
2. Learning to Combine Answer Boundary Detection and Answer Re‐ranking for Phrase‐Indexed Question Answering
- Author
-
Shi Haibo, Wang Houfeng, Yin Dawei, Wei Xiaochi, Wang Xiaolin, Wang Junfeng, Zhang Xiaodong, Sun Xin, Cheng Zhicong, Luo Yingwei, and Wen Liang
- Subjects
Phrase ,business.industry ,Computer science ,Applied Mathematics ,Inference ,Boundary (topology) ,Machine learning ,computer.software_genre ,Ranking (information retrieval) ,Task (project management) ,Question answering ,Independence (mathematical logic) ,Artificial intelligence ,Electrical and Electronic Engineering ,business ,Encoder ,computer - Abstract
Phrase-indexed question answering (PIQA) seeks to improve the inference speed of question answering (QA) models by enforcing complete independence of the document encoder from the question encoder, and it shows that the constrained model can achieve significant efficiency at the cost of its accuracy. In this paper, we aim to build a model under the PIQA constraint while reducing its accuracy gap with the unconstrained QA models. We propose a novel framework—AnsDR, which consists of an answer boundary detector (AnsD) and an answer candidate ranker (AnsR). More specifically, AnsD is a QA model under the PIQA architecture and it is designed to identify the rough answer boundaries; and AnsR is a lightweight ranking model to finely re-rank the potential candidates without losing the efficiency. We perform the extensive experiments on public datasets. The experimental results show that the proposed method achieves the state of the art on the PIQA task.
- Published
- 2022
3. Hybrid Multiple Deep Learning Models to Boost Blocking Bug Prediction
- Author
-
Zhihua Chen Zhihua Chen, Xiaolin Ju Zhihua Chen, Haochen Wang Xiaolin Ju, and Xiang Chen Haochen Wang
- Subjects
Computer Networks and Communications ,Software - Abstract
A blocking bug (BB) is a severe bug that could prevent other bugs from being fixed in time and cost more effort to repair itself in software maintenance. Hence, early detection of BBs is essential to save time and labor costs. However, BBs only occupy a small proportion of all bugs during software life cycle, making it difficult for developers to identify these blocking relationships. This study proposes a novel blocking bug prediction approach based on the hybrid deep learning model, a combination of Bi-directional Long Short-Term Memory (Bi-LSTM) and Convolutional Neural Network (CNN). Our approach first extracts summaries and descriptions from bug reports to construct two classifiers, respectively. Second, our approach combines two classifiers into a hybrid model to predict the blocking relationship of each blocking bug pair. Finally, our approach produces a report of identified blocking bugs for developers. To investigate the effectiveness of proposed approach, we conducted an empirical study on bug reports of seven large-scale projects. The final experimental results illustrate that our approach can perform better than the recent state-of-the-art baselines. Precisely, the hybrid model can predict BB better with an average accuracy of 57.20%, and an improvement of 73.53% in terms of the F1-measure when compared to ELBlocker. Moreover, according to the bug report’s description, BB can be predicted well with an average accuracy of 49.16%.  
- Published
- 2022
4. Evidence for the decays $B^{0}\rightarrow\bar{D}^{(*)0}\phi$ and updated measurements of the branching fractions of the $B^{0}_{s}\rightarrow\bar{D}^{(*)0}\phi$ decays
- Author
-
Aaij, Roel, Abdelmotteleb, Ahmed Sameh Wagih, Abellan Beteta, Carlos, Abudinén, Fernando Jesus, Ackernley, Thomas, Adeva, Bernardo, Adinolfi, Marco, Adlarson, Patrik Harri, Afsharnia, Hossein, Agapopoulou, Christina, Aidala, Christine Angela, Ajaltouni, Ziad, Akar, Simon, Akiba, Kazuyoshi, Albicocco, Pietro, Albrecht, Johannes, Alessio, Federico, Alexander, Michael, Alfonso Albero, Alejandro, Aliouche, Zakariya, Alvarez Cartelle, Paula, Amalric, Renaud, Amato, Sandra, Amey, Jake Lewis, Amhis, Yasmine, An, Liupan, Anderlini, Lucio, Andersson, Martin, Andreianov, Aleksei, Andreotti, Mirco, Andreou, Dimitra, Ao, Dong, Archilli, Flavio, Artamonov, Alexander, Artuso, Marina, Aslanides, Elie, Atzeni, Michele, Audurier, Benjamin, Bachiller Perea, Irene, Bachmann, Sebastian, Bachmayer, Marie, Back, John, Bailly-Reyre, Aurelien, Baladron Rodriguez, Pablo, Balagura, Vladislav, Baldini, Wander, Baptista de Souza Leite, Juan, Barbetti, Matteo, Barbosa, Ivanildo Rui, Barlow, Roger, Barsuk, Sergey, Barter, William, Bartolini, Matteo, Baryshnikov, Fedor, Basels, Jan-Marc, Bassi, Giovanni, Batsukh, Baasansuren, Battig, Alexander, Bay, Aurelio, Beck, Anja, Becker, Maik, Bedeschi, Franco, Bediaga, Ignacio, Beiter, Andrew, Belin, Samuel, Bellee, Violaine, Belous, Konstantin, Belov, Ilia, Belyaev, Ivan, Benane, Gaya, Bencivenni, Giovanni, Ben-Haim, Eli, Berezhnoy, Alexander, Bernet, Roland, Bernet Andres, Sergi, Berninghoff, Daniel, Bernstein, Harris Conan, Bertella, Claudia, Bertolin, Alessandro, Betancourt, Christopher, Betti, Federico, Bezshyiko, Iaroslava, Bhom, Jihyun, Bian, Lingzhu, Bieker, Martin Stefan, Biesuz, Nicolo Vladi, Billoir, Pierre, Biolchini, Alice, Birch, Matthew, Bishop, Fionn Caitlin Ros, Bitadze, Alexander, Bizzeti, Andrea, Blago, Michele Piero, Blake, Thomas, Blanc, Frederic, Blank, Jonah Evan, Blusk, Steven, Bobulska, Dana, Bocharnikov, Vladimir, Boelhauve, Julian Alexander, Boente Garcia, Oscar, Boettcher, Thomas, Boldyrev, Alexey, Bolognani, Carolina, Bolzonella, Riccardo, Bondar, Nikolay, Borgato, Federica, Borghi, Silvia, Borsato, Martino, Borsuk, Jozef Tomasz, Bouchiba, Sonia Amina, Bowcock, Themistocles, Boyer, Alexandre, Bozzi, Concezio, Bradley, Matthew John, Braun, Svende, Brea Rodriguez, Alexandre, Breer, Nils, Brodzicka, Jolanta, Brossa Gonzalo, Arnau, Brown, James David, Brundu, Davide, Buonaura, Annarita, Buonincontri, Laura, Burke, Aodhan Tomas, Burr, Christopher, Bursche, Albert, Butkevich, Anatoly, Butter, Jordy Sebastiaan, Buytaert, Jan, Byczynski, Wiktor, Cadeddu, Sandro, Cai, Hao, Calabrese, Roberto, Calefice, Lukas, Cali, Stefano, Calvi, Marta, Calvo Gomez, Miriam, Campana, Pierluigi, Campora Perez, Daniel Hugo, Campoverde Quezada, Angel Fernando, Capelli, Simone, Capriotti, Lorenzo, Carbone, Angelo, Cardinale, Roberta, Cardini, Alessandro, Carniti, Paolo, Carus, Leon David, Casais Vidal, Adrian, Caspary, Rowina, Casse, Gianluigi, Cattaneo, Marco, Cavallero, Giovanni, Cavallini, Viola, Celani, Sara, Cerasoli, Jacopo, Cervenkov, Daniel, Chadwick, Abbie Jane, Chahrour, Ibrahim, Chapman, Matthew George, Charles, Matthew, Charpentier, Philippe, Chavez Barajas, Carlos Alberto, Chefdeville, Maximilien, Chen, Chen, Chen, Shanzhen, Chernov, Aleksei, Chernyshenko, Serhii, Chobanova, Veronika, Cholak, Serhii, Chrzaszcz, Marcin, Chubykin, Aleksei, Chulikov, Vladimir, Ciambrone, Paolo, Cicala, Maria Flavia, Cid Vidal, Xabier, Ciezarek, Gregory, Cifra, Pierfrancesco, Ciullo, Giuseppe, Clarke, Peter, Clemencic, Marco, Cliff, Harry, Closier, Joel, Cobbledick, John Leslie, Coco, Victor, Cogan, Julien, Cogneras, Eric, Cojocariu, Lucian, Collins, Paula, Colombo, Tommaso, Congedo, Liliana, Contu, Andrea, Cooke, Naomi, Corredoira, Imanol, Corti, Gloria, Couturier, Benjamin, Craik, Daniel Charles, Cruz Torres, Melissa Maria, Currie, Robert, da Silva, Cesar Luiz, Dadabaev, Shakhzod, Dai, Lingyun, Dai, Xinchen, Dall'Occo, Elena, Dalseno, Jeremy, d'Ambrosio, Carmelo, Daniel, Jessy, Danilina, Anna, d'Argent, Philippe, Davies, Jonathan Edward, Davis, Adam, de Aguiar Francisco, Oscar, de Boer, Jan, de Bruyn, Kristof, de Capua, Stefano, de Cian, Michel, de Freitas Carneiro da Graca, Ulisses, de Lucia, Erika, de Miranda, Jussara, de Paula, Leandro, de Serio, Marilisa, de Simone, Dario, de Simone, Patrizia, de Vellis, Fabio, de Vries, Jacco, Dean, Cameron Thomas, Debernardis, Francesco, Decamp, Daniel, Dedu, Vlad-George, del Buono, Luigi, Delaney, Blaise, Dembinski, Hans Peter, Denysenko, Vadym, Deschamps, Olivier, Dettori, Francesco, Dey, Biplab, Di Nezza, Pasquale, Diachkov, Igor, Didenko, Sergey, Dieste Maronas, Lorena, Ding, Shuchong, Dobishuk, Vasyl, Dolmatov, Aleksandr, Dong, Chenzhi, Donohoe, Amanda May, Dordei, Francesca, dos Reis, Alberto, Douglas, Lauren, Downes, Anthony Gavin, Duda, Piotr Jakub, Dudek, Maciej Wojciech, Dufour, Laurent, Duk, Viacheslav, Durante, Paolo, Duras, Maciej, Durham, John Matthew, Dutta, Deepanwita, Dziurda, Agnieszka, Dzyuba, Alexey, Easo, Sajan, Egede, Ulrik, Egorychev, Artem, Egorychev, Victor, Eirea Orro, Caetano, Eisenhardt, Stephan, Ejopu, Enoch, Ek-In, Surapat, Eklund, Lars, Elashri, Mohamed, Ellbracht, Jan Hendrik, Ely, Scott, Ene, Alexandru, Epple, Eliane, Escher, Stephan, Eschle, Jonas Nathanael, Esen, Sevda, Evans, Timothy, Fabiano, Federica, Falcao, Lucas, Fan, Yanting, Fang, Bo, Fantini, Lisa, Faria, Maria, Farry, Stephen, Fazzini, Davide, Felkowski, Lukasz Jerzy, Feo, Mauricio, Fernandez Gomez, Miguel, Fernez, Alex Daniel, Ferrari, Fabio, Ferreira Lopes, Lino, Ferreira Rodrigues, Fernando, Ferreres Sole, Silvia, Ferrillo, Martina, Ferro-Luzzi, Massimiliano, Filippov, Sergey, Fini, Rosa Anna, Fiorini, Massimiliano, Firlej, Miroslaw, Fischer, Kamil Leszek, Fitzgerald, Dillon Scott, Fitzpatrick, Conor, Fiutowski, Tomasz, Fleuret, Frederic, Fontana, Marianna, Fontanelli, Flavio, Forty, Roger, Foulds-Holt, Daniel, Franco Lima, Vinicius, Franco Sevilla, Manuel, Frank, Markus, Franzoso, Edoardo, Frau, Giulia, Frei, Christoph, Friday, David Anthony, Frontini, Luca, Fu, Jinlin, Fuehring, Quentin, Fulghesu, Tommaso, Gabriel, Emmy, Galati, Giuliana, Galati, Maria Domenica, Gallas Torreira, Abraham, Galli, Domenico, Gambetta, Silvia, Gandelman, Miriam, Gandini, Paolo, Gao, Han, Gao, Rui, Gao, Yang, Gao, Yuanning, Garau, Michela, Garcia Martin, Luis Miguel, Garcia Moreno, Paula, García Pardiñas, Julián, Garcia Plana, Beatriz, Garcia Rosales, Felipe Andres, Garrido, Lluis, Gaspar, Clara, Geertsema, Robbert Erik, Gerick, David, Gerken, Louis Lenard, Gersabeck, Evelina, Gersabeck, Marco, Gershon, Timothy, Giambastiani, Luca, Gibson, Valerie, Giemza, Henryk Karol, Gilman, Alexander Leon, Giovannetti, Matteo, Gioventù, Alessandra, Gironella Gironell, Pere, Giugliano, Carmen, Giza, Maciej Artur, Gizdov, Konstantin, Gkougkousis, Evangelos Leonidas, Gligorov, Vladimir, Göbel, Carla, Golobardes, Elisabet, Golubkov, Dmitry, Golutvin, Andrey, Gomes, Alvaro, Gomez Fernandez, Sergio, Goncalves Abrantes, Fernanda, Goncerz, Mateusz, Gong, Guanghua, Gorelov, Igor Vladimirovich, Gotti, Claudio, Grabowski, Jascha Peter, Grammatico, Thomas, Granado Cardoso, Luis Alberto, Graugés, Eugeni, Graverini, Elena, Graziani, Giacomo, Grecu, Alexandru Tudor, Greeven, Lex Marinus, Grieser, Nathan Allen, Grillo, Lucia, Gromov, Sergey, Gu, Chenxi, Guarise, Marco, Guittiere, Manuel, Guliaeva, Vasilisa, Günther, Paul Andre, Guseinov, Abdul-Kerim, Gushchin, Evgeny, Guz, Yury, Gys, Thierry, Hadavizadeh, Thomas, Hadjivasiliou, Christos, Haefeli, Guido, Haen, Christophe, Haimberger, Jakob, Haines, Susan, Halewood-Leagas, Tabitha, Halvorsen, Marius Maehlum, Hamilton, Phoebe Meredith, Hammerich, Jan, Han, Qundong, Han, Xiaoxue, Hansmann-Menzemer, Stephanie, Hao, Lei, Harnew, Neville, Harrison, Thomas, Hasse, Christoph, Hatch, Mark, He, Jibo, Heijhoff, Kevin, Hemmer, Frederic, Henderson, Conor, Henderson, Riley Dylan Leslie, Hennequin, Arthur Marius, Hennessy, Karol, Henry, Louis, Herd, James Daniel, Heuel, Johannes, Hicheur, Adlène, Hill, Donal, Hilton, Martha, Hollitt, Sophie, Horswill, Joshua Ethan, Hou, Ruiwen, Hou, Yingrui, Hu, Jiangqiao, Hu, Jifeng, Hu, Wenhua, Hu, Xiaofan, Huang, Wenqian, Huang, Xiaotao, Hulsbergen, Wouter, Hunter, Ross John, Hushchyn, Mikhail, Hutchcroft, David, Ibis, Philipp, Idzik, Marek, Ilin, Dmitrii, Ilten, Philip, Inglessi, Alexander, Iniukhin, Aleksandr, Ishteev, Artur, Ivshin, Kuzma, Jacobsson, Richard, Jage, Hendrik, Jaimes Elles, Sergio Javier, Jakobsen, Sune, Jans, Eddy, Jashal, Brij Kishor, Jawahery, Abolhassan, Jevtic, Vukan, Jiang, Emily Kaiyin, Jiang, Xiaojie, Jiang, Yi, John, Malcolm, Johnson, Daniel, Jones, Christopher, Jones, Thomas Peter, Joshi, Salil, Jost, Beat, Jurik, Nathan, Juszczak, Izabela, Kandybei, Sergii, Kang, Youen, Karacson, Matthias, Karpenkov, Dmitrii, Karpov, Maksim, Kautz, Jacob William, Keizer, Floris, Keller, Dustin Michael, Kenzie, Matthew, Ketel, Tjeerd, Khanji, Basem, Kharisova, Anastasiia, Kholodenko, Sergei, Khreich, Gaelle, Kirn, Thomas, Kirsebom, Veronica Soelund, Kitouni, Ouail, Klaver, Suzanne, Kleijne, Nico, Klimaszewski, Konrad, Kmiec, Mateusz Rafal, Koliiev, Serhii, Kolk, Lars, Kondybayeva, Almagul, Konoplyannikov, Anatoly, Kopciewicz, Pawel, Kopecna, Renata, Koppenburg, Patrick, Korolev, Mikhail, Kostiuk, Igor, Kot, Oleksander, Kotriakhova, Sofia, Kozachuk, Anastasiia, Kravchenko, Polina, Kravchuk, Leonid, Kreps, Michal, Kretzschmar, Sophie Katharina, Krokovny, Pavel, Krupa, Wojciech, Krzemien, Wojciech, Kubat, Jakub, Kubis, Sebastian Antoni, Kucewicz, Wojciech, Kucharczyk, Marcin, Kudryavtsev, Vasily, Kulikova, Evgenia, Kupsc, Andrzej, Lacarrere, Daniel, Lafferty, George, Lai, Adriano, Lampis, Andrea, Lancierini, Davide, Landesa Gomez, Clara, Lane, John Jake, Lane, Richard, Langenbruch, Christoph, Langer, Jan, Lantwin, Oliver, Latham, Thomas, Lazzari, Federico, Lazzeroni, Cristina, Le Gac, Renaud, Lee, Sook Hyun, Lefèvre, Regis, Leflat, Alexander, Legotin, Sergey, Lenisa, Paolo, Leroy, Olivier, Lesiak, Tadeusz, Leverington, Blake, Li, Anfeng, Li, Hengne, Li, Kechen, Li, Peilian, Li, Pei-Rong, Li, Shiyang, Li, Tiange, Li, Tianqi, Li, Yiming, Li, Zhuoming, Lian, Zhengchen, Liang, Xixin, Lin, Chuangxin, Lin, Tai-Hua, Lindner, Rolf, Lisovskyi, Vitalii, Litvinov, Roman, Liu, Guoming, Liu, Huanhuan, Liu, Kai, Liu, Qian, Liu, Shuaiyi, Lobo Salvia, Aniol, Loi, Angelo, Lollini, Riccardo, Lomba Castro, Julian, Longstaff, Iain, Lopes, Jose, Lopez Huertas, Albert, López Soliño, Saúl, Lovell, George Holger, Lu, Yu, Lucarelli, Chiara, Lucchesi, Donatella, Luchuk, Stanislav, Lucio Martinez, Miriam, Lukashenko, Valeriia, Luo, Yiheng, Lupato, Anna, Luppi, Eleonora, Lynch, Kate, Lyu, Xiao-Rui, Ma, Ruiting, Maccolini, Serena, Machefert, Frederic, Maciuc, Florin, Mackay, Innes, Macko, Vladimir, Madhan Mohan, Lakshan Ram, Maevskiy, Artem, Maisuzenko, Dmitrii, Majewski, Maciej Witold, Malczewski, Jakub Jacek, Malde, Sneha, Malecki, Bartosz, Malinin, Alexander, Maltsev, Timofei, Manca, Giulia, Mancinelli, Giampiero, Mancuso, Chiara, Manera Escalero, Rafel, Manuzzi, Daniele, Manzari, Claudio Andrea, Marangotto, Daniele, Marchand, Jean François, Marconi, Umberto, Mariani, Saverio, Marin Benito, Carla, Marks, Jörg, Marshall, Alexander Mclean, Marshall, Phillip John, Martelli, Gabriele, Martellotti, Giuseppe, Martinazzoli, Loris, Martinelli, Maurizio, Martinez Santos, Diego, Martinez Vidal, Fernando, Massafferri, André, Materok, Marcel, Matev, Rosen, Mathad, Abhijit, Matiunin, Viacheslav, Matteuzzi, Clara, Mattioli, Kara Renee, Mauri, Andrea, Maurice, Emilie, Mauricio, Joan, Mazurek, Michal, Mccann, Michael, Mcconnell, Lucas, Mcgrath, Tamaki Holly, Mchugh, Niall Thomas, Mcnab, Andrew, Mcnulty, Ronan, Meadows, Brian, Meier, Gerwin, Melnychuk, Dmytro, Meloni, Simone, Merk, Marcel, Merli, Andrea, Meyer Garcia, Lucas, Miao, Dexing, Miao, Han, Mikhasenko, Mikhail, Milanes, Diego Alejandro, Milovanovic, Marko, Minard, Marie-Noelle, Minotti, Alessandro, Minucci, Elisa, Miralles, Tristan, Mitchell, Sara Elizabeth, Mitreska, Biljana, Mitzel, Dominik Stefan, Modak, Atanu, Mödden, Antje, Mohammed, Rizwaan Adeeb, Moise, Razvan-Daniel, Mokhnenko, Sergei, Mombächer, Titus, Monk, Matthew David, Monroy, Igancio Alberto, Monteil, Stephane, Morello, Gianfranco, Morello, Michael Joseph, Morgenthaler, Maurice Pierre, Moron, Jakub, Morris, Adam Benjamin, Morris, Andrew George, Mountain, Raymond, Mu, Hongjie, Muhammad, Emir, Muheim, Franz, Mulder, Mick, Müller, Katharina, Murray, Donal, Murta, Rebecca, Muzzetto, Piera, Naik, Paras, Nakada, Tatsuya, Nandakumar, Raja, Nanut, Tara, Nasteva, Irina, Needham, Matthew, Neri, Nicola, Neubert, Sebastian, Neufeld, Niko, Neustroev, Petr, Newcombe, Ryan, Nicolini, Janina, Nicotra, Davide, Niel, Elisabeth Maria, Nieswand, Simon, Nikitin, Nikolay, Nolte, Niklas Stefan, Normand, Camille, Novoa Fernandez, Julio, Nowak, Gabriel Matthew, Nunez, Cynthia, Oblakowska-Mucha, Agnieszka, Obraztsov, Vladimir, Oeser, Thomas, Okamura, Shinichi, Oldeman, Rudolf, Oliva, Federica, Olocco, Micol, Onderwater, Gerco, O'Neil, Ryunosuke Hugo, Otalora Goicochea, Juan Martin, Ovsiannikova, Tatiana, Owen, Patrick, Oyanguren, Maria Aranzazu, Ozcelik, Ozlem, Padeken, Klaas Ole, Pagare, Bhagyashree, Pais, Preema Rennee, Pajero, Tommaso, Palano, Antimo, Palutan, Matteo, Panshin, Gennady, Paolucci, Lorenzo, Papanestis, Antonios, Pappagallo, Marco, Pappalardo, Luciano, Pappenheimer, Cheryl, Parker, William, Parkes, Christopher, Passalacqua, Barbara, Passaleva, Giovanni, Pastore, Alessandra, Patel, Mitesh, Patrignani, Claudia, Pawley, Christopher James, Pellegrino, Antonio, Pepe Altarelli, Monica, Perazzini, Stefano, Pereima, Dmitrii, Pereiro Castro, Asier, Perret, Pascal, Petridis, Konstantinos, Petrolini, Alessandro, Petrucci, Stefano, Petruzzo, Marco, Pham, Hang, Philippov, Anton, Piandani, Roberto, Pica, Lorenzo, Piccini, Mauro, Pietrzyk, Boleslaw, Pietrzyk, Guillaume, Pinci, Davide, Pisani, Flavio, Pizzichemi, Marco, Placinta, Vlad-Mihai, Plews, Jonathan, Plo Casasus, Maximo, Polci, Francesco, Poli Lener, Marco, Poluektov, Anton, Polukhina, Natalia, Polyakov, Ivan, Polycarpo, Erica, Ponce, Sebastien, Popov, Dmitry, Poslavskii, Stanislav, Prasanth, Kodassery, Promberger, Laura, Prouve, Claire, Pugatch, Valery, Puill, Veronique, Punzi, Giovanni, Qi, Hongrong, Qian, Wenbin, Qin, Ning, Qu, Sanqiang, Quagliani, Renato, Raab, Naomi Veronika, Rachwal, Bartlomiej, Rademacker, Jonas, Rajagopalan, Rohan, Rama, Matteo, Ramos Pernas, Miguel, Rangel, Murilo, Ratnikov, Fedor, Raven, Gerhard, Rebollo de Miguel, Miguel, Redi, Federico, Reich, Jake, Reiss, Florian, Ren, Zan, Resmi, P.K, Ribatti, Roberto, Ricci, Alessandro Maria, Ricciardi, Stefania, Richardson, Kate Abigail, Richardson-Slipper, Mary, Rinnert, Kurt, Robbe, Patrick, Robertson, Gary, Rodrigues, Eduardo, Rodriguez Fernandez, Emilio Xose, Rodriguez Lopez, Jairo Alexis, Rodriguez Rodriguez, Efren, Rolf, David Leonhard, Rollings, Alexandra Paige, Roloff, Philipp, Romanovskiy, Vladimir, Romero Lamas, Marcos, Romero Vidal, Antonio, Rotondo, Marcello, Rudolph, Matthew Scott, Ruf, Thomas, Ruiz Fernandez, Ramon Angel, Ruiz Vidal, Joan, Ryzhikov, Artem, Ryzka, Jakub, Saborido Silva, Juan Jose, Sagidova, Naylya, Sahoo, Niladribihari, Saitta, Biagio, Salomoni, Matteo, Sanchez Gras, Cristina, Sanderswood, Izaac, Santacesaria, Roberta, Santamarina Rios, Cibran, Santimaria, Marco, Santoro, Leonardo, Santovetti, Emanuele, Saranin, Danila, Sarpis, Gediminas, Sarpis, Mindaugas, Sarti, Alessio, Satriano, Celestina, Satta, Alessia, Saur, Miroslav, Savrina, Darya, Sazak, Halime, Scantlebury Smead, Luke George, Scarabotto, Alessandro, Schael, Stefan, Scherl, Sigrid, Schertz, Amy Marie, Schiller, Manuel, Schindler, Heinrich, Schmelling, Michael, Schmidt, Burkhard, Schmitt, Sebastian, Schneider, Olivier, Schopper, Andreas, Schubiger, Maxime, Schulte, Nicole, Schulte, Sebastian, Schune, Marie Helene, Schwemmer, Rainer, Schwering, Georg, Sciascia, Barbara, Sciuccati, Augusto, Sellam, Sara, Semennikov, Alexander, Senghi Soares, Mara, Sergi, Antonino, Serra, Nicola, Sestini, Lorenzo, Seuthe, Alex, Shang, Yiduo, Shangase, Desmond Mzamo, Shapkin, Mikhail, Shchemerov, Ivan, Shchutska, Lesya, Shears, Tara, Shekhtman, Lev, Shen, Zhihong, Sheng, Shuqi, Shevchenko, Vladimir, Shi, Boan, Shields, Edward Brendan, Shimizu, Yuya, Shmanin, Evgenii, Shorkin, Roman, Shupperd, Joseph David, Siddi, Benedetto Gianluca, Silva Coutinho, Rafael, Simi, Gabriele, Simone, Saverio, Singla, Minni, Skidmore, Nicola, Skuza, Raphael, Skwarnicki, Tomasz, Slater, Mark, Smallwood, Jennifer Clare, Smeaton, John Gordon, Smith, Eluned, Smith, Krista Lizbeth, Smith, Mark, Snoch, Aleksandra, Soares Lavra, Lais, Sokoloff, Michael, Soler, Paul, Solomin, Anatoly, Solovev, Aleksandr, Solovyev, Ivan, Song, Rongrong, Souza de Almeida, Felipe Luan, Souza de Paula, Bruno, Spadaro Norella, Elisabetta, Spedicato, Eugenia, Speer, Jannis Guido, Spiridenkov, Eduard, Spradlin, Patrick, Sriskaran, Viros, Stagni, Federico, Stahl, Marian, Stahl, Sascha, Stanislaus, Seophine, Stein, Eloise Noelle, Steinkamp, Olaf, Stenyakin, Oleg, Stevens, Holger, Strekalina, Daria, Su, Yangjie, Suljik, Fidan, Sun, Jiayin, Sun, Liang, Sun, Yipeng, Swallow, Paul Nathaniel, Swientek, Krzysztof, Szabelski, Adam, Szumlak, Tomasz, Szymanski, Maciej Pawel, Tan, Yinghua, Taneja, Shantam, Tat, Martin Duy, Terentev, Aleksandr, Teubert, Frederic, Thomas, Eric, Thompson, Daniel James David, Tilquin, Hanae, Tisserand, Vincent, t'Jampens, Stephane, Tobin, Mark, Tomassetti, Luca, Tonani, Giorgia, Tong, Xingyu, Torres Machado, Diego, Toscano, Luca, Tou, da Yu, Trippl, Carina, Tuci, Giulia, Tuning, Niels, Ukleja, Artur, Unverzagt, Daniel Joachim, Usachov, Andrii, Ustyuzhanin, Andrey, Uwer, Ulrich, Vagnoni, Vincenzo, Valassi, Andrea, Valenti, Giovanni, Valls Canudas, Nuria, van Dijk, Maarten, van Hecke, Hubert, van Herwijnen, Eric, van Hulse, Charlotte Barbara, van Veghel, Maarten, Vazquez Gomez, Ricardo, Vazquez Regueiro, Pablo, Vázquez Sierra, Carlos, Vecchi, Stefania, Velthuis, Jaap, Veltri, Michele, Venkateswaran, Aravindhan, Vesterinen, Mika, Vieira, Daniel, Vieites Diaz, Maria, Vilasis-Cardona, Xavier, Vilella Figueras, Eva, Villa, Andrea, Vincent, Pascal, Volle, Felicia Carolin, Vom Bruch, Dorothea, Vorobyev, Vitaly, Voropaev, Nikolai, Vos, Kimberley, Vrahas, Constantinos, Walsh, John, Walton, Eliot Jane, Wan, Guanyue, Wang, Chishuai, Wang, Ganrong, Wang, Jialu, Wang, Jianchun, Wang, Jianqiao, Wang, Jike, Wang, Mengzhen, Wang, Rui, Wang, Xiaolin, Wang, Yilong, Wang, Zhenzi, Wang, Zirui, Wang, Ziyi, Ward, Jake Alexander, Watson, Nigel, Websdale, David, Wei, Yajing, Westhenry, Benedict Donald C, White, Dylan Jaide, Whitehead, Mark, Wiederhold, Aidan Richard, Wiedner, Dirk, Wilkinson, Guy, Wilkinson, Michael K, Williams, Ifan, Williams, Mike, Williams, Mark Richard James, Williams, Richard Morgan, Wilson, Fergus, Wislicki, Wojciech, Witek, Mariusz, Witola, Lukas, Wong, Cheuk Ping, Wormser, Guy, Wotton, Stephen, Wu, Hangyi, Wu, Jie, Wu, Yanxi, Wyllie, Kenneth, Xiang, Zhiyu, Xie, Yuehong, Xu, Ao, Xu, Jingyi, Xu, Li, Xu, Liangjun, Xu, Menglin, Xu, Qingnian, Xu, Zehua, Xu, Zhihao, Xu, Zijun, Yang, Di, Yang, Shuangli, Yang, Xueting, Yang, Youhua, Yang, Zhenwei, Yang, Zishuo, Yeroshenko, Vsevolod, Yeung, Ho Yin Dereck, Yin, Hang, Yu, Jiesheng, Yuan, Xuhao, Zaffaroni, Ettore, Zavertyaev, Mikhail, Zdybal, Milosz, Zeng, Ming, Zhang, Chenjia, Zhang, Dongliang, Zhang, Jianyu, Zhang, Liming, Zhang, Shulei, Zhang, Shunan, Zhang, Yanxi, Zhang, Yu, Zhao, Ya, Zharkova, Alina, Zhelezov, Alexey, Zheng, Yangheng, Zhou, Tianwen, Zhou, Xiaokang, Zhou, Yixiong, Zhovkovska, Valeriia, Zhu, Xianglei, Zhu, Xiaoyu, Zhu, Zhanwen, Zhukov, Valery, Zhuo, Jiahui, Zou, Quan, Zucchelli, Stefano, Zuliani, Davide, Zunica, Gianluca, Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), and LHCb
- Subjects
CKM matrix ,p p, scattering ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,mixing angle ,TeV ,branching ratio ,statistical ,LHC-B ,Particle Physics - Experiment ,High Energy Physics - Experiment - Abstract
Evidence for the decays $B^{0}\rightarrow\bar{D}^{0}\phi$ and $B^{0} \rightarrow \bar{D}^{*0}\phi$ is reported with a significance of 3.6$\,\sigma$ and 4.3$\,\sigma$, respectively. The analysis employs $pp$ collision data at centre-of-mass energies $\sqrt{s}=7$, 8 and 13 TeV collected by the LHCb detector and corresponding to an integrated luminosity of 9 $\rm{fb}^{-1}$. The branching fractions are measured to be $\mathcal{B}(B^{0}\rightarrow\bar{D}^{0}\phi) = (7.7\pm2.1\pm0.7\pm0.7)\times10^{-7}$, $\mathcal{B}(B^{0} \rightarrow \bar{D}^{*0}\phi)=(2.2\pm0.5\pm0.2\pm0.2)\times10^{-6}$. In these results, the first uncertainties are statistical, the second systematic, and the third is related to the branching fraction of the $B^{0}\rightarrow\bar{D}^{0}K^{+}K^{-}$ decay, used for normalisation. By combining the branching fractions of the decays $B^{0}\rightarrow\bar{D}^{(*)0}\phi$ and $B^{0}\rightarrow\bar{D}^{(*)0}\omega$, the $\omega$-$\phi$ mixing angle $\delta$ is constrained to be $\tan^2\delta = (3.6\pm0.7\pm0.4)\times10^{-3}$, where the first uncertainty is statistical and the second systematic. An updated measurement of the branching fractions of the $B^{0}_{s} \rightarrow \bar{D}^{(*)0}\phi$ decays, which can be used to determine the CKM angle $\gamma$, leads to $\mathcal{B}(B^{0}_{s}\rightarrow\bar{D}^{0}\phi)=(2.30\pm0.10 \pm 0.11\pm0.20)\times10^{-5}$, $\mathcal{B}(B^{0}_{s}\rightarrow\bar{D}^{*0}\phi) =(3.17\pm0.16 \pm 0.17 \pm 0.27)\times10^{-5}$., Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-003.html (LHCb public pages)
- Published
- 2023
5. FAOF: a feature aggregation method based on optical flow for gangue detection on production environment
- Author
-
Miao Yanzi, Wang Xiaolin, Zhang Yuanhao, Ji Liang, Wang Yizhou, and Xu Zhiyang
- Subjects
Control and Systems Engineering ,Industrial and Manufacturing Engineering - Abstract
Purpose The purpose of this paper is to improve the precision of gangue detection. In the real production environment, some gangue features are not obvious, and it is difficult to distinguish between coal and gangue. The color of the conveyor belt is similar to the gangue, the background noise also brings challenge to gangue detection. To address the above problems, we propose a feature aggregation method based on optical flow (FAOF). Design/methodology/approach An FAOF is proposed. First, to enhance the feature representation of the current frame, FAOF applies the timing information of video stream, propagates the feature information of the past few frames to the current frame by optical flow. Second, the coordinate attention (CA) module is adopted to suppress the noise impact brought by the background of convey belt. Third, the Mish activation function is used to replace rectified linear unit to improve the generalization capability of our model. Findings The experimental results show that the gangue detection model proposed in this paper improve 4.3 average precision compared to baseline. This model can effectively improve the accuracy of gangue detection in real production environment. Originality/value The key contributions are as follows: this study proposes an FAOF; this study adds CA module and Mish to reduce noise from the background of the conveyor belt; and this study also constructs a large gangue data set.
- Published
- 2022
6. Measurement of $\Xi^{+}_{c}$ production in pPb collisions at $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV at LHCb
- Author
-
Aaij, Roel, Abdelmotteleb, Ahmed Sameh Wagih, Abellan Beteta, Carlos, Abudinén, Fernando Jesus, Ackernley, Thomas, Adeva, Bernardo, Adinolfi, Marco, Adlarson, Patrik Harri, Afsharnia, Hossein, Agapopoulou, Christina, Aidala, Christine Angela, Ajaltouni, Ziad, Akar, Simon, Akiba, Kazuyoshi, Albicocco, Pietro, Albrecht, Johannes, Alessio, Federico, Alexander, Michael, Alfonso Albero, Alejandro, Aliouche, Zakariya, Alvarez Cartelle, Paula, Amalric, Renaud, Amato, Sandra, Amey, Jake Lewis, Amhis, Yasmine, An, Liupan, Anderlini, Lucio, Andersson, Martin, Andreianov, Aleksei, Andreotti, Mirco, Andreou, Dimitra, Ao, Dong, Archilli, Flavio, Artamonov, Alexander, Artuso, Marina, Aslanides, Elie, Atzeni, Michele, Audurier, Benjamin, Bachiller Perea, Irene, Bachmann, Sebastian, Bachmayer, Marie, Back, John, Bailly-reyre, Aurelien, Baladron Rodriguez, Pablo, Balagura, Vladislav, Baldini, Wander, Baptista de Souza Leite, Juan, Barbetti, Matteo, Barlow, Roger, Barsuk, Sergey, Barter, William, Bartolini, Matteo, Baryshnikov, Fedor, Basels, Jan-Marc, Bassi, Giovanni, Batozskaya, Varvara, Batsukh, Baasansuren, Battig, Alexander, Bay, Aurelio, Beck, Anja, Becker, Maik, Bedeschi, Franco, Bediaga, Ignacio, Beiter, Andrew, Belin, Samuel, Bellee, Violaine, Belous, Konstantin, Belov, Ilia, Belyaev, Ivan, Benane, Gaya, Bencivenni, Giovanni, Ben-Haim, Eli, Berezhnoy, Alexander, Bernet, Roland, Bernet Andres, Sergi, Berninghoff, Daniel, Bernstein, Harris Conan, Bertella, Claudia, Bertolin, Alessandro, Betancourt, Christopher, Betti, Federico, Bezshyiko, Iaroslava, Bhasin, Srishti, Bhom, Jihyun, Bian, Lingzhu, Bieker, Martin Stefan, Biesuz, Nicolo Vladi, Billoir, Pierre, Biolchini, Alice, Birch, Matthew, Bishop, Fionn Caitlin Ros, Bitadze, Alexander, Bizzeti, Andrea, Blago, Michele Piero, Blake, Thomas, Blanc, Frederic, Blank, Jonah Evan, Blusk, Steven, Bobulska, Dana, Boelhauve, Julian Alexander, Boente Garcia, Oscar, Boettcher, Thomas, Boldyrev, Alexey, Bolognani, Carolina, Bolzonella, Riccardo, Bondar, Nikolay, Borgato, Federica, Borghi, Silvia, Borsato, Martino, Borsuk, Jozef Tomasz, Bouchiba, Sonia Amina, Bowcock, Themistocles, Boyer, Alexandre, Bozzi, Concezio, Bradley, Matthew John, Braun, Svende, Brea Rodriguez, Alexandre, Brodzicka, Jolanta, Brossa Gonzalo, Arnau, Brown, James David, Brundu, Davide, Buonaura, Annarita, Buonincontri, Laura, Burke, Aodhan Tomas, Burr, Christopher, Bursche, Albert, Butkevich, Anatoly, Butter, Jordy Sebastiaan, Buytaert, Jan, Byczynski, Wiktor, Cadeddu, Sandro, Cai, Hao, Calabrese, Roberto, Calefice, Lukas, Cali, Stefano, Calvi, Marta, Calvo Gomez, Miriam, Campana, Pierluigi, Campora Perez, Daniel Hugo, Campoverde Quezada, Angel Fernando, Capelli, Simone, Capriotti, Lorenzo, Carbone, Angelo, Cardinale, Roberta, Cardini, Alessandro, Carniti, Paolo, Carus, Leon David, Casais Vidal, Adrian, Caspary, Rowina, Casse, Gianluigi, Cattaneo, Marco, Cavallero, Giovanni, Cavallini, Viola, Celani, Sara, Cerasoli, Jacopo, Cervenkov, Daniel, Chadwick, Abbie Jane, Chahrour, Ibrahim, Chapman, Matthew George, Charles, Matthew, Charpentier, Philippe, Chavez Barajas, Carlos Alberto, Chefdeville, Maximilien, Chen, Chen, Chen, Shanzhen, Chernov, Aleksei, Chernyshenko, Serhii, Chobanova, Veronika, Cholak, Serhii, Chrzaszcz, Marcin, Chubykin, Aleksei, Chulikov, Vladimir, Ciambrone, Paolo, Cicala, Maria Flavia, Cid Vidal, Xabier, Ciezarek, Gregory, Cifra, Pierfrancesco, Clarke, Peter, Clemencic, Marco, Cliff, Harry, Closier, Joel, Cobbledick, John Leslie, Coco, Victor, Cogan, Julien, Cogneras, Eric, Cojocariu, Lucian, Collins, Paula, Colombo, Tommaso, Congedo, Liliana, Contu, Andrea, Cooke, Naomi, Corredoira, Imanol, Corti, Gloria, Couturier, Benjamin, Craik, Daniel Charles, Cruz Torres, Melissa Maria, Currie, Robert, Da Silva, Cesar Luiz, Dadabaev, Shakhzod, Dai, Lingyun, Dai, Xinchen, Dall'Occo, Elena, Dalseno, Jeremy, D'Ambrosio, Carmelo, Daniel, Jessy, Danilina, Anna, d'Argent, Philippe, Davies, Jonathan Edward, Davis, Adam, De Aguiar Francisco, Oscar, de Boer, Jan, De Bruyn, Kristof, De Capua, Stefano, De Cian, Michel, De Freitas Carneiro Da Graca, Ulisses, De Lucia, Erika, De Miranda, Jussara, De Paula, Leandro, De Serio, Marilisa, De Simone, Dario, De Simone, Patrizia, De Vellis, Fabio, de Vries, Jacco, Dean, Cameron Thomas, Debernardis, Francesco, Decamp, Daniel, Dedu, Vlad-George, Del Buono, Luigi, Delaney, Blaise, Dembinski, Hans Peter, Denysenko, Vadym, Deschamps, Olivier, Dettori, Francesco, Dey, Biplab, Di Nezza, Pasquale, Diachkov, Igor, Didenko, Sergey, Dieste Maronas, Lorena, Ding, Shuchong, Dobishuk, Vasyl, Dolmatov, Aleksandr, Dong, Chenzhi, Donohoe, Amanda May, Dordei, Francesca, dos Reis, Alberto, Douglas, Lauren, Downes, Anthony Gavin, Duda, Piotr Jakub, Dudek, Maciej Wojciech, Dufour, Laurent, Duk, Viacheslav, Durante, Paolo, Duras, Maciej, Durham, John Matthew, Dutta, Deepanwita, Dziurda, Agnieszka, Dzyuba, Alexey, Easo, Sajan, Egede, Ulrik, Egorychev, Victor, Eirea Orro, Caetano, Eisenhardt, Stephan, Ejopu, Enoch, Ek-In, Surapat, Eklund, Lars, Elashri, Mohamed, Ellbracht, Jan Hendrik, Ely, Scott, Ene, Alexandru, Epple, Eliane, Escher, Stephan, Eschle, Jonas Nathanael, Esen, Sevda, Evans, Timothy, Fabiano, Federica, Falcao, Lucas, Fan, Yanting, Fang, Bo, Fantini, Lisa, Faria, Maria, Farry, Stephen, Fazzini, Davide, Felkowski, Lukasz Jerzy, Feo, Mauricio, Fernandez Gomez, Miguel, Fernez, Alex Daniel, Ferrari, Fabio, Ferreira Lopes, Lino, Ferreira Rodrigues, Fernando, Ferreres Sole, Silvia, Ferrillo, Martina, Ferro-Luzzi, Massimiliano, Filippov, Sergey, Fini, Rosa Anna, Fiorini, Massimiliano, Firlej, Miroslaw, Fischer, Kamil Leszek, Fitzgerald, Dillon Scott, Fitzpatrick, Conor, Fiutowski, Tomasz, Fleuret, Frederic, Fontana, Marianna, Fontanelli, Flavio, Forty, Roger, Foulds-Holt, Daniel, Franco Lima, Vinicius, Franco Sevilla, Manuel, Frank, Markus, Franzoso, Edoardo, Frau, Giulia, Frei, Christoph, Friday, David Anthony, Frontini, Luca, Fu, Jinlin, Fuehring, Quentin, Fulghesu, Tommaso, Gabriel, Emmy, Galati, Giuliana, Galati, Maria Domenica, Gallas Torreira, Abraham, Galli, Domenico, Gambetta, Silvia, Gandelman, Miriam, Gandini, Paolo, Gao, Yang, Gao, Yuanning, Garau, Michela, Garcia Martin, Luis Miguel, Garcia Moreno, Paula, García Pardiñas, Julián, Garcia Plana, Beatriz, Garcia Rosales, Felipe Andres, Garrido, Lluis, Gaspar, Clara, Geertsema, Robbert Erik, Gerick, David, Gerken, Louis Lenard, Gersabeck, Evelina, Gersabeck, Marco, Gershon, Timothy, Giambastiani, Luca, Gibson, Valerie, Giemza, Henryk Karol, Gilman, Alexander Leon, Giovannetti, Matteo, Gioventù, Alessandra, Gironella Gironell, Pere, Giugliano, Carmen, Giza, Maciej Artur, Gizdov, Konstantin, Gkougkousis, Evangelos Leonidas, Gligorov, Vladimir, Göbel, Carla, Golobardes, Elisabet, Golubkov, Dmitry, Golutvin, Andrey, Gomes, Alvaro, Gomez Fernandez, Sergio, Goncalves Abrantes, Fernanda, Goncerz, Mateusz, Gong, Guanghua, Gorelov, Igor Vladimirovich, Gotti, Claudio, Grabowski, Jascha Peter, Grammatico, Thomas, Granado Cardoso, Luis Alberto, Graugés, Eugeni, Graverini, Elena, Graziani, Giacomo, Grecu, Alexandru Tudor, Greeven, Lex Marinus, Grieser, Nathan Allen, Grillo, Lucia, Gromov, Sergey, Gruberg Cazon, Barak Raimond, Gu, Chenxi, Guarise, Marco, Guittiere, Manuel, Günther, Paul Andre, Gushchin, Evgeny, Guth, Andreas, Guz, Yury, Gys, Thierry, Hadavizadeh, Thomas, Hadjivasiliou, Christos, Haefeli, Guido, Haen, Christophe, Haimberger, Jakob, Haines, Susan, Halewood-leagas, Tabitha, Halvorsen, Marius Maehlum, Hamilton, Phoebe Meredith, Hammerich, Jan, Han, Qundong, Han, Xiaoxue, Hansen, Eva Brottmann, Hansmann-Menzemer, Stephanie, Hao, Lei, Harnew, Neville, Harrison, Thomas, Hasse, Christoph, Hatch, Mark, He, Jibo, Heijhoff, Kevin, Hemmer, Frederic, Henderson, Conor, Henderson, Riley Dylan Leslie, Hennequin, Arthur Marius, Hennessy, Karol, Henry, Louis, Herd, James Daniel, Heuel, Johannes, Hicheur, Adlène, Hill, Donal, Hilton, Martha, Hollitt, Sophie, Horswill, Joshua Ethan, Hou, Ruiwen, Hou, Yingrui, Hu, Jiangqiao, Hu, Jifeng, Hu, Wenhua, Hu, Xiaofan, Huang, Wenqian, Huang, Xiaotao, Hulsbergen, Wouter, Hunter, Ross John, Hushchyn, Mikhail, Hutchcroft, David, Ibis, Philipp, Idzik, Marek, Ilin, Dmitrii, Ilten, Philip, Inglessi, Alexander, Iniukhin, Aleksandr, Ishteev, Artur, Ivshin, Kuzma, Jacobsson, Richard, Jage, Hendrik, Jaimes Elles, Sergio Javier, Jakobsen, Sune, Jans, Eddy, Jashal, Brij Kishor, Jawahery, Abolhassan, Jevtic, Vukan, Jiang, Emily Kaiyin, Jiang, Xiaojie, Jiang, Yi, John, Malcolm, Johnson, Daniel, Jones, Christopher, Jones, Thomas Peter, Jost, Beat, Jurik, Nathan, Juszczak, Izabela, Kandybei, Sergii, Kang, Youen, Karacson, Matthias, Karpenkov, Dmitrii, Karpov, Maksim, Kautz, Jacob William, Keizer, Floris, Keller, Dustin Michael, Kenzie, Matthew, Ketel, Tjeerd, Khanji, Basem, Kharisova, Anastasiia, Kholodenko, Sergei, Khreich, Gaelle, Kirn, Thomas, Kirsebom, Veronica Soelund, Kitouni, Ouail, Klaver, Suzanne, Kleijne, Nico, Klimaszewski, Konrad, Kmiec, Mateusz Rafal, Koliiev, Serhii, Kolk, Lars, Kondybayeva, Almagul, Konoplyannikov, Anatoly, Kopciewicz, Pawel, Kopecna, Renata, Koppenburg, Patrick, Korolev, Mikhail, Kostiuk, Igor, Kot, Oleksander, Kotriakhova, Sofia, Kozachuk, Anastasiia, Kravchenko, Polina, Kravchuk, Leonid, Krawczyk, Rafal Dominik, Kreps, Michal, Kretzschmar, Sophie Katharina, Krokovny, Pavel, Krupa, Wojciech, Krzemien, Wojciech, Kubat, Jakub, Kubis, Sebastian Antoni, Kucewicz, Wojciech, Kucharczyk, Marcin, Kudryavtsev, Vasily, Kulikova, Evgenia, Kupsc, Andrzej, Lacarrere, Daniel, Lafferty, George, Lai, Adriano, Lampis, Andrea, Lancierini, Davide, Landesa Gomez, Clara, Lane, John Jake, Lane, Richard, Langenbruch, Christoph, Langer, Jan, Lantwin, Oliver, Latham, Thomas, Lazzari, Federico, Lazzaroni, Massimo, Le Gac, Renaud, Lee, Sook Hyun, Lefèvre, Regis, Leflat, Alexander, Legotin, Sergey, Leroy, Olivier, Lesiak, Tadeusz, Leverington, Blake, Li, Anfeng, Li, Hengne, Li, Kechen, Li, Peilian, Li, Pei-Rong, Li, Shiyang, Li, Tiange, Li, Tianqi, Li, Yiming, Li, Zhuoming, Liang, Xixin, Lin, Chuangxin, Lin, Tai-hua, Lindner, Rolf, Lisovskyi, Vitalii, Litvinov, Roman, Liu, Guoming, Liu, Huanhuan, Liu, Qian, Liu, Shuaiyi, Lobo Salvia, Aniol, Loi, Angelo, Lollini, Riccardo, Lomba Castro, Julian, Longstaff, Iain, Lopes, Jose, Lopez Huertas, Albert, López Soliño, Saúl, Lovell, George Holger, Lu, Yu, Lucarelli, Chiara, Lucchesi, Donatella, Luchuk, Stanislav, Lucio Martinez, Miriam, Lukashenko, Valeriia, Luo, Yiheng, Lupato, Anna, Luppi, Eleonora, Lusiani, Alberto, Lynch, Kate, Lyu, Xiao-Rui, Ma, Ruiting, Maccolini, Serena, Machefert, Frederic, Maciuc, Florin, Mackay, Innes, Macko, Vladimir, Madhan Mohan, Lakshan Ram, Maevskiy, Artem, Maisuzenko, Dmitrii, Majewski, Maciej Witold, Malczewski, Jakub Jacek, Malde, Sneha, Malecki, Bartosz, Malinin, Alexander, Maltsev, Timofei, Manca, Giulia, Mancinelli, Giampiero, Mancuso, Chiara, Manera Escalero, Rafel, Manuzzi, Daniele, Manzari, Claudio Andrea, Marangotto, Daniele, Maratas, Jan Mickelle, Marchand, Jean François, Marconi, Umberto, Mariani, Saverio, Marin Benito, Carla, Marks, Jörg, Marshall, Alexander Mclean, Marshall, Phillip John, Martelli, Gabriele, Martellotti, Giuseppe, Martinazzoli, Loris, Martinelli, Maurizio, Martinez Santos, Diego, Martinez Vidal, Fernando, Massafferri, André, Materok, Marcel, Matev, Rosen, Mathad, Abhijit, Matiunin, Viacheslav, Matteuzzi, Clara, Mattioli, Kara Renee, Mauri, Andrea, Maurice, Emilie, Mauricio, Joan, Mazurek, Michal, McCann, Michael, Mcconnell, Lucas, McGrath, Tamaki Holly, McHugh, Niall Thomas, McNab, Andrew, McNulty, Ronan, Mead, James Vincent, Meadows, Brian, Meier, Gerwin, Melnychuk, Dmytro, Meloni, Simone, Merk, Marcel, Merli, Andrea, Meyer Garcia, Lucas, Miao, Dexing, Mikhasenko, Mikhail, Milanes, Diego Alejandro, Millard, Edward James, Milovanovic, Marko, Minard, Marie-Noelle, Minotti, Alessandro, Miralles, Tristan, Mitchell, Sara Elizabeth, Mitreska, Biljana, Mitzel, Dominik Stefan, Mödden, Antje, Mohammed, Rizwaan Adeeb, Moise, Razvan-Daniel, Mokhnenko, Sergei, Mombächer, Titus, Monk, Matthew David, Monroy, Igancio Alberto, Monteil, Stephane, Morello, Gianfranco, Morello, Michael Joseph, Morgenthaler, Maurice Pierre, Moron, Jakub, Morris, Adam Benjamin, Morris, Andrew George, Mountain, Raymond, Mu, Hongjie, Muhammad, Emir, Muheim, Franz, Mulder, Mick, Müller, Katharina, Murphy, Colm Harold, Murray, Donal, Murta, Rebecca, Muzzetto, Piera, Naik, Paras, Nakada, Tatsuya, Nandakumar, Raja, Nanut, Tara, Nasteva, Irina, Needham, Matthew, Neri, Nicola, Neubert, Sebastian, Neufeld, Niko, Neustroev, Petr, Newcombe, Ryan, Nicolini, Janina, Nicotra, Davide, Niel, Elisabeth Maria, Nieswand, Simon, Nikitin, Nikolay, Nolte, Niklas Stefan, Normand, Camille, Novoa Fernandez, Julio, Nowak, Gabriel Matthew, Nunez, Cynthia, Oblakowska-Mucha, Agnieszka, Obraztsov, Vladimir, Oeser, Thomas, Okamura, Shinichi, Oldeman, Rudolf, Oliva, Federica, Onderwater, Gerco, O'Neil, Ryunosuke Hugo, Otalora Goicochea, Juan Martin, Ovsiannikova, Tatiana, Owen, Patrick, Oyanguren, Maria Aranzazu, Ozcelik, Ozlem, Padeken, Klaas Ole, Pagare, Bhagyashree, Pais, Preema Rennee, Pajero, Tommaso, Palano, Antimo, Palutan, Matteo, Pan, Yue, Panshin, Gennady, Paolucci, Lorenzo, Papanestis, Antonios, Pappagallo, Marco, Pappalardo, Luciano, Pappenheimer, Cheryl, Parker, William, Parkes, Christopher, Passalacqua, Barbara, Passaleva, Giovanni, Pastore, Alessandra, Patel, Mitesh, Patrignani, Claudia, Pawley, Christopher James, Pellegrino, Antonio, Pepe Altarelli, Monica, Perazzini, Stefano, Pereima, Dmitrii, Pereiro Castro, Asier, Perret, Pascal, Petridis, Konstantinos, Petrolini, Alessandro, Petrov, Aleksandr, Petrucci, Stefano, Petruzzo, Marco, Pham, Hang, Philippov, Anton, Piandani, Roberto, Pica, Lorenzo, Piccini, Mauro, Pietrzyk, Boleslaw, Pietrzyk, Guillaume, Pili, Martina, Pinci, Davide, Pisani, Flavio, Pizzichemi, Marco, Placinta, Vlad-Mihai, Plews, Jonathan, Plo Casasus, Maximo, Polci, Francesco, Poli Lener, Marco, Poluektov, Anton, Polukhina, Natalia, Polyakov, Ivan, Polycarpo, Erica, Ponce, Sebastien, Popov, Dmitry, Poslavskii, Stanislav, Prasanth, Kodassery, Promberger, Laura, Prouve, Claire, Pugatch, Valery, Puill, Veronique, Punzi, Giovanni, Qi, Hongrong, Qian, Wenbin, Qin, Ning, Qu, Sanqiang, Quagliani, Renato, Raab, Naomi Veronika, Rachwal, Bartlomiej, Rademacker, Jonas, Rajagopalan, Rohan, Rama, Matteo, Ramos Pernas, Miguel, Rangel, Murilo, Ratnikov, Fedor, Raven, Gerhard, Rebollo De Miguel, Miguel, Redi, Federico, Reich, Jake, Reiss, Florian, Remon Alepuz, Clara, Ren, Zan, Resmi, P.K., Ribatti, Roberto, Ricci, Alessandro Maria, Ricciardi, Stefania, Richardson, Kate Abigail, Richardson-Slipper, Mary, Rinnert, Kurt, Robbe, Patrick, Robertson, Gary, Rodrigues, Ana Barbara, Rodrigues, Eduardo, Rodriguez Fernandez, Emilio Xose, Rodriguez Lopez, Jairo Alexis, Rodriguez Rodriguez, Efren, Rolf, David Leonhard, Rollings, Alexandra Paige, Roloff, Philipp, Romanovskiy, Vladimir, Romero Lamas, Marcos, Romero Vidal, Antonio, Roth, Jordan Daniel, Rotondo, Marcello, Rudolph, Matthew Scott, Ruf, Thomas, Ruiz Fernandez, Ramon Angel, Ruiz Vidal, Joan, Ryzhikov, Artem, Ryzka, Jakub, Saborido Silva, Juan Jose, Sagidova, Naylya, Sahoo, Niladribihari, Saitta, Biagio, Salomoni, Matteo, Sanchez Gras, Cristina, Sanderswood, Izaac, Santacesaria, Roberta, Santamarina Rios, Cibran, Santimaria, Marco, Santovetti, Emanuele, Saranin, Danila, Sarpis, Gediminas, Sarpis, Mindaugas, Sarti, Alessio, Satriano, Celestina, Satta, Alessia, Saur, Miroslav, Savrina, Darya, Sazak, Halime, Scantlebury Smead, Luke George, Scarabotto, Alessandro, Schael, Stefan, Scherl, Sigrid, Schiller, Manuel, Schindler, Heinrich, Schmelling, Michael, Schmidt, Burkhard, Schmitt, Sebastian, Schneider, Olivier, Schopper, Andreas, Schubiger, Maxime, Schulte, Sebastian, Schune, Marie Helene, Schwemmer, Rainer, Sciascia, Barbara, Sciuccati, Augusto, Sellam, Sara, Semennikov, Alexander, Senghi Soares, Mara, Sergi, Antonino, Serra, Nicola, Sestini, Lorenzo, Seuthe, Alex, Shang, Yiduo, Shangase, Desmond Mzamo, Shapkin, Mikhail, Shchemerov, Ivan, Shchutska, Lesya, Shears, Tara, Shekhtman, Lev, Shen, Zhihong, Sheng, Shuqi, Shevchenko, Vladimir, Shi, Boan, Shields, Edward Brendan, Shimizu, Yuya, Shmanin, Evgenii, Shorkin, Roman, Shupperd, Joseph David, Siddi, Benedetto Gianluca, Silva Coutinho, Rafael, Simi, Gabriele, Simone, Saverio, Singla, Minni, Skidmore, Nicola, Skuza, Raphael, Skwarnicki, Tomasz, Slater, Mark, Smallwood, Jennifer Clare, Smeaton, John Gordon, Smith, Eluned, Smith, Krista Lizbeth, Smith, Mark, Snoch, Aleksandra, Soares Lavra, Lais, Sokoloff, Michael, Soler, Paul, Solomin, Anatoly, Solovev, Aleksandr, Solovyev, Ivan, Song, Rongrong, Souza De Almeida, Felipe Luan, Souza De Paula, Bruno, Spaan, Bernhard, Spadaro Norella, Elisabetta, Spedicato, Eugenia, Spiridenkov, Eduard, Spradlin, Patrick, Sriskaran, Viros, Stagni, Federico, Stahl, Marian, Stahl, Sascha, Stanislaus, Seophine, Stein, Eloise Noelle, Steinkamp, Olaf, Stenyakin, Oleg, Stevens, Holger, Stone, Sheldon, Strekalina, Daria, Su, Yangjie, Suljik, Fidan, Sun, Jiayin, Sun, Liang, Sun, Yipeng, Svihra, Peter, Swallow, Paul Nathaniel, Swientek, Krzysztof, Szabelski, Adam, Szumlak, Tomasz, Szymanski, Maciej Pawel, Tan, Yinghua, Taneja, Shantam, Tat, Martin Duy, Terentev, Aleksandr, Teubert, Frederic, Thomas, Eric, Thompson, Daniel James David, Thomson, Kayleigh Anne, Tilquin, Hanae, Tisserand, Vincent, T'Jampens, Stephane, Tobin, Mark, Tomassetti, Luca, Tonani, Giorgia, Tong, Xingyu, Torres Machado, Diego, Tou, Da Yu, Trilov, Stoyan Miroslavov, Trippl, Carina, Tuci, Giulia, Tuning, Niels, Ukleja, Artur, Unverzagt, Daniel Joachim, Usachov, Andrii, Ustyuzhanin, Andrey, Uwer, Ulrich, Vagner, Alexander, Vagnoni, Vincenzo, Valassi, Andrea, Valenti, Giovanni, Valls Canudas, Nuria, Van Dijk, Maarten, Van Hecke, Hubert, van Herwijnen, Eric, Van Hulse, Charlotte Barbara, van Veghel, Maarten, Vazquez Gomez, Ricardo, Vazquez Regueiro, Pablo, Vázquez Sierra, Carlos, Vecchi, Stefania, Velthuis, Jaap, Veltri, Michele, Venkateswaran, Aravindhan, Veronesi, Michele, Vesterinen, Mika, Vieira, Daniel, Vieites Diaz, Maria, Vilasis-Cardona, Xavier, Vilella Figueras, Eva, Villa, Andrea, Vincent, Pascal, Volle, Felicia Carolin, vom Bruch, Dorothea, Vorobyev, Alexey, Vorobyev, Vitaly, Voropaev, Nikolai, Vos, Kimberley, Vrahas, Constantinos, Walsh, John, Walton, Eliot Jane, Wan, Guanyue, Wang, Chishuai, Wang, Ganrong, Wang, Jialu, Wang, Jianchun, Wang, Jianqiao, Wang, Jike, Wang, Mengzhen, Wang, Rui, Wang, Xiaolin, Wang, Yilong, Wang, Zhenzi, Wang, Zirui, Wang, Ziyi, Ward, Jake Alexander, Watson, Nigel, Websdale, David, Wei, Yajing, Westhenry, Benedict Donald C., White, Dylan Jaide, Whitehead, Mark, Wiederhold, Aidan Richard, Wiedner, Dirk, Wilkinson, Guy, Wilkinson, Michael K., Williams, Ifan, Williams, Mike, Williams, Mark Richard James, Williams, Richard Morgan, Wilson, Fergus, Wislicki, Wojciech, Witek, Mariusz, Witola, Lukas, Wong, Cheuk Ping, Wormser, Guy, Wotton, Stephen, Wu, Hangyi, Wu, Jie, Wyllie, Kenneth, Xiang, Zhiyu, Xie, Yuehong, Xu, Ao, Xu, Jingyi, Xu, Li, Xu, Liangjun, Xu, Menglin, Xu, Qingnian, Xu, Zehua, Xu, Zhihao, Yang, Di, Yang, Shuangli, Yang, Xueting, Yang, Youhua, Yang, Zhenwei, Yang, Zishuo, Yeomans, Lauren Emma, Yeroshenko, Vsevolod, Yeung, Ho Yin Dereck, Yin, Hang, Yu, Jiesheng, Yuan, Xuhao, Zaffaroni, Ettore, Zavertyaev, Mikhail, Zdybal, Milosz, Zeng, Ming, Zhang, Chenjia, Zhang, Dongliang, Zhang, Liming, Zhang, Shulei, Zhang, Shunan, Zhang, Yanxi, Zhang, Yu, Zhao, Ya, Zharkova, Alina, Zhelezov, Alexey, Zheng, Yangheng, Zhou, Tianwen, Zhou, Xiaokang, Zhou, Yixiong, Zhovkovska, Valeriia, Zhu, Xianglei, Zhu, Xiaoyu, Zhu, Zhanwen, Zhukov, Valery, Zou, Quan, Zucchelli, Stefano, Zuliani, Davide, and Zunica, Gianluca
- Subjects
Nuclear Physics - Experiment ,Particle Physics - Experiment - Abstract
A study of prompt $\Xi_{c}^{+}$ production in proton-lead collisions is performed with the LHCb experiment at a centre-of-mass energy per nucleon pair of 8.16 TeV in 2016 in $p$Pb and Pb$p$ collisions with an estimated integrated luminosity of approximately 12.5 and 17.4 nb$^{-1}$, respectively. The $\Xi_{c}^{+}$ production cross-section, as well as the $\Xi_{c}^{+}$ to $\Lambda_{c}^{+}$ production cross-section ratio, are measured as a function of the transverse momentum and rapidity and compared to latest theory predictions. The forward-backward asymmetry is also measured as a function of the $\Xi_{c}^{+}$ transverse momentum. A study of prompt $\Xi_{c}^{+}$ production in proton-lead collisions is performed with the LHCb experiment at a centre-of-mass energy per nucleon pair of 8.16 TeV in 2016 in $p$Pb and Pb$p$ collisions with an estimated integrated luminosity of approximately 12.5 and 17.4 nb$^{-1}$, respectively. The $\Xi_{c}^{+}$ production cross-section, as well as the $\Xi_{c}^{+}$ to $\Lambda_{c}^{+}$ production cross-section ratio, are measured as a function of the transverse momentum and rapidity and compared to latest theory predictions. The forward-backward asymmetry is also measured as a function of the $\Xi_{c}^{+}$ transverse momentum.
- Published
- 2023
7. Precision measurement of CP violation in the penguin-mediated decay $B_s^{0 } \rightarrow \phi \phi$
- Author
-
Aaij, Roel, Abdelmotteleb, Ahmed Sameh Wagih, Abellan Beteta, Carlos, Abudinén, Fernando Jesus, Ackernley, Thomas, Adeva, Bernardo, Adinolfi, Marco, Adlarson, Patrik Harri, Afsharnia, Hossein, Agapopoulou, Christina, Aidala, Christine Angela, Ajaltouni, Ziad, Akar, Simon, Akiba, Kazuyoshi, Albicocco, Pietro, Albrecht, Johannes, Alessio, Federico, Alexander, Michael, Alfonso Albero, Alejandro, Aliouche, Zakariya, Alvarez Cartelle, Paula, Amalric, Renaud, Amato, Sandra, Amey, Jake Lewis, Amhis, Yasmine, An, Liupan, Anderlini, Lucio, Andersson, Martin, Andreianov, Aleksei, Andreotti, Mirco, Andreou, Dimitra, Ao, Dong, Archilli, Flavio, Artamonov, Alexander, Artuso, Marina, Aslanides, Elie, Atzeni, Michele, Audurier, Benjamin, Bachiller Perea, Irene, Bachmann, Sebastian, Bachmayer, Marie, Back, John, Bailly-reyre, Aurelien, Baladron Rodriguez, Pablo, Balagura, Vladislav, Baldini, Wander, Baptista de Souza Leite, Juan, Barbetti, Matteo, Barlow, Roger, Barsuk, Sergey, Barter, William, Bartolini, Matteo, Baryshnikov, Fedor, Basels, Jan-Marc, Bassi, Giovanni, Batozskaya, Varvara, Batsukh, Baasansuren, Battig, Alexander, Bay, Aurelio, Beck, Anja, Becker, Maik, Bedeschi, Franco, Bediaga, Ignacio, Beiter, Andrew, Belin, Samuel, Bellee, Violaine, Belous, Konstantin, Belov, Ilia, Belyaev, Ivan, Benane, Gaya, Bencivenni, Giovanni, Ben-Haim, Eli, Berezhnoy, Alexander, Bernet, Roland, Bernet Andres, Sergi, Berninghoff, Daniel, Bernstein, Harris Conan, Bertella, Claudia, Bertolin, Alessandro, Betancourt, Christopher, Betti, Federico, Bezshyiko, Iaroslava, Bhom, Jihyun, Bian, Lingzhu, Bieker, Martin Stefan, Biesuz, Nicolo Vladi, Billoir, Pierre, Biolchini, Alice, Birch, Matthew, Bishop, Fionn Caitlin Ros, Bitadze, Alexander, Bizzeti, Andrea, Blago, Michele Piero, Blake, Thomas, Blanc, Frederic, Blank, Jonah Evan, Blusk, Steven, Bobulska, Dana, Bocharnikov, Vladimir, Boelhauve, Julian Alexander, Boente Garcia, Oscar, Boettcher, Thomas, Boldyrev, Alexey, Bolognani, Carolina, Bolzonella, Riccardo, Bondar, Nikolay, Borgato, Federica, Borghi, Silvia, Borsato, Martino, Borsuk, Jozef Tomasz, Bouchiba, Sonia Amina, Bowcock, Themistocles, Boyer, Alexandre, Bozzi, Concezio, Bradley, Matthew John, Braun, Svende, Brea Rodriguez, Alexandre, Breer, Nils, Brodzicka, Jolanta, Brossa Gonzalo, Arnau, Brown, James David, Brundu, Davide, Buonaura, Annarita, Buonincontri, Laura, Burke, Aodhan Tomas, Burr, Christopher, Bursche, Albert, Butkevich, Anatoly, Butter, Jordy Sebastiaan, Buytaert, Jan, Byczynski, Wiktor, Cadeddu, Sandro, Cai, Hao, Calabrese, Roberto, Calefice, Lukas, Cali, Stefano, Calvi, Marta, Calvo Gomez, Miriam, Campana, Pierluigi, Campora Perez, Daniel Hugo, Campoverde Quezada, Angel Fernando, Capelli, Simone, Capriotti, Lorenzo, Carbone, Angelo, Cardinale, Roberta, Cardini, Alessandro, Carniti, Paolo, Carus, Leon David, Casais Vidal, Adrian, Caspary, Rowina, Casse, Gianluigi, Cattaneo, Marco, Cavallero, Giovanni, Cavallini, Viola, Celani, Sara, Cerasoli, Jacopo, Cervenkov, Daniel, Chadwick, Abbie Jane, Chahrour, Ibrahim, Chapman, Matthew George, Charles, Matthew, Charpentier, Philippe, Chavez Barajas, Carlos Alberto, Chefdeville, Maximilien, Chen, Chen, Chen, Shanzhen, Chernov, Aleksei, Chernyshenko, Serhii, Chobanova, Veronika, Cholak, Serhii, Chrzaszcz, Marcin, Chubykin, Aleksei, Chulikov, Vladimir, Ciambrone, Paolo, Cicala, Maria Flavia, Cid Vidal, Xabier, Ciezarek, Gregory, Cifra, Pierfrancesco, Clarke, Peter, Clemencic, Marco, Cliff, Harry, Closier, Joel, Cobbledick, John Leslie, Coco, Victor, Cogan, Julien, Cogneras, Eric, Cojocariu, Lucian, Collins, Paula, Colombo, Tommaso, Congedo, Liliana, Contu, Andrea, Cooke, Naomi, Corredoira, Imanol, Corti, Gloria, Couturier, Benjamin, Craik, Daniel Charles, Cruz Torres, Melissa Maria, Currie, Robert, Da Silva, Cesar Luiz, Dadabaev, Shakhzod, Dai, Lingyun, Dai, Xinchen, Dall'Occo, Elena, Dalseno, Jeremy, D'Ambrosio, Carmelo, Daniel, Jessy, Danilina, Anna, d'Argent, Philippe, Davies, Jonathan Edward, Davis, Adam, De Aguiar Francisco, Oscar, de Boer, Jan, De Bruyn, Kristof, De Capua, Stefano, De Cian, Michel, De Freitas Carneiro Da Graca, Ulisses, De Lucia, Erika, De Miranda, Jussara, De Paula, Leandro, De Serio, Marilisa, De Simone, Dario, De Simone, Patrizia, De Vellis, Fabio, de Vries, Jacco, Dean, Cameron Thomas, Debernardis, Francesco, Decamp, Daniel, Dedu, Vlad-George, Del Buono, Luigi, Delaney, Blaise, Dembinski, Hans Peter, Denysenko, Vadym, Deschamps, Olivier, Dettori, Francesco, Dey, Biplab, Di Nezza, Pasquale, Diachkov, Igor, Didenko, Sergey, Dieste Maronas, Lorena, Ding, Shuchong, Dobishuk, Vasyl, Dolmatov, Aleksandr, Dong, Chenzhi, Donohoe, Amanda May, Dordei, Francesca, dos Reis, Alberto, Douglas, Lauren, Downes, Anthony Gavin, Duda, Piotr Jakub, Dudek, Maciej Wojciech, Dufour, Laurent, Duk, Viacheslav, Durante, Paolo, Duras, Maciej, Durham, John Matthew, Dutta, Deepanwita, Dziurda, Agnieszka, Dzyuba, Alexey, Easo, Sajan, Egede, Ulrik, Egorychev, Artem, Egorychev, Victor, Eirea Orro, Caetano, Eisenhardt, Stephan, Ejopu, Enoch, Ek-In, Surapat, Eklund, Lars, Elashri, Mohamed, Ellbracht, Jan Hendrik, Ely, Scott, Ene, Alexandru, Epple, Eliane, Escher, Stephan, Eschle, Jonas Nathanael, Esen, Sevda, Evans, Timothy, Fabiano, Federica, Falcao, Lucas, Fan, Yanting, Fang, Bo, Fantini, Lisa, Faria, Maria, Farry, Stephen, Fazzini, Davide, Felkowski, Lukasz Jerzy, Feo, Mauricio, Fernandez Gomez, Miguel, Fernez, Alex Daniel, Ferrari, Fabio, Ferreira Lopes, Lino, Ferreira Rodrigues, Fernando, Ferreres Sole, Silvia, Ferrillo, Martina, Ferro-Luzzi, Massimiliano, Filippov, Sergey, Fini, Rosa Anna, Fiorini, Massimiliano, Firlej, Miroslaw, Fischer, Kamil Leszek, Fitzgerald, Dillon Scott, Fitzpatrick, Conor, Fiutowski, Tomasz, Fleuret, Frederic, Fontana, Marianna, Fontanelli, Flavio, Forty, Roger, Foulds-Holt, Daniel, Franco Lima, Vinicius, Franco Sevilla, Manuel, Frank, Markus, Franzoso, Edoardo, Frau, Giulia, Frei, Christoph, Friday, David Anthony, Frontini, Luca, Fu, Jinlin, Fuehring, Quentin, Fulghesu, Tommaso, Gabriel, Emmy, Galati, Giuliana, Galati, Maria Domenica, Gallas Torreira, Abraham, Galli, Domenico, Gambetta, Silvia, Gandelman, Miriam, Gandini, Paolo, Gao, Han, Gao, Rui, Gao, Yang, Gao, Yuanning, Garau, Michela, Garcia Martin, Luis Miguel, Garcia Moreno, Paula, García Pardiñas, Julián, Garcia Plana, Beatriz, Garcia Rosales, Felipe Andres, Garrido, Lluis, Gaspar, Clara, Geertsema, Robbert Erik, Gerick, David, Gerken, Louis Lenard, Gersabeck, Evelina, Gersabeck, Marco, Gershon, Timothy, Giambastiani, Luca, Gibson, Valerie, Giemza, Henryk Karol, Gilman, Alexander Leon, Giovannetti, Matteo, Gioventù, Alessandra, Gironella Gironell, Pere, Giugliano, Carmen, Giza, Maciej Artur, Gizdov, Konstantin, Gkougkousis, Evangelos Leonidas, Gligorov, Vladimir, Göbel, Carla, Golobardes, Elisabet, Golubkov, Dmitry, Golutvin, Andrey, Gomes, Alvaro, Gomez Fernandez, Sergio, Goncalves Abrantes, Fernanda, Goncerz, Mateusz, Gong, Guanghua, Gorelov, Igor Vladimirovich, Gotti, Claudio, Grabowski, Jascha Peter, Grammatico, Thomas, Granado Cardoso, Luis Alberto, Graugés, Eugeni, Graverini, Elena, Graziani, Giacomo, Grecu, Alexandru Tudor, Greeven, Lex Marinus, Grieser, Nathan Allen, Grillo, Lucia, Gromov, Sergey, Gu, Chenxi, Guarise, Marco, Guittiere, Manuel, Guliaeva, Vasilisa, Günther, Paul Andre, Guseinov, Abdul-Kerim, Gushchin, Evgeny, Guz, Yury, Gys, Thierry, Hadavizadeh, Thomas, Hadjivasiliou, Christos, Haefeli, Guido, Haen, Christophe, Haimberger, Jakob, Haines, Susan, Halewood-leagas, Tabitha, Halvorsen, Marius Maehlum, Hamilton, Phoebe Meredith, Hammerich, Jan, Han, Qundong, Han, Xiaoxue, Hansmann-Menzemer, Stephanie, Harnew, Neville, Harrison, Thomas, Hasse, Christoph, Hatch, Mark, He, Jibo, Heijhoff, Kevin, Hemmer, Frederic, Henderson, Conor, Henderson, Riley Dylan Leslie, Hennequin, Arthur Marius, Hennessy, Karol, Henry, Louis, Herd, James Daniel, Heuel, Johannes, Hicheur, Adlène, Hill, Donal, Hilton, Martha, Hollitt, Sophie, Horswill, Joshua Ethan, Hou, Ruiwen, Hou, Yingrui, Hu, Jiangqiao, Hu, Jifeng, Hu, Wenhua, Hu, Xiaofan, Huang, Wenqian, Huang, Xiaotao, Hulsbergen, Wouter, Hunter, Ross John, Hushchyn, Mikhail, Hutchcroft, David, Ibis, Philipp, Idzik, Marek, Ilin, Dmitrii, Ilten, Philip, Inglessi, Alexander, Iniukhin, Aleksandr, Ishteev, Artur, Ivshin, Kuzma, Jacobsson, Richard, Jage, Hendrik, Jaimes Elles, Sergio Javier, Jakobsen, Sune, Jans, Eddy, Jashal, Brij Kishor, Jawahery, Abolhassan, Jevtic, Vukan, Jiang, Emily Kaiyin, Jiang, Xiaojie, Jiang, Yi, John, Malcolm, Johnson, Daniel, Jones, Christopher, Jones, Thomas Peter, Joshi, Salil, Jost, Beat, Jurik, Nathan, Juszczak, Izabela, Kandybei, Sergii, Kang, Youen, Karacson, Matthias, Karpenkov, Dmitrii, Karpov, Maksim, Kautz, Jacob William, Keizer, Floris, Keller, Dustin Michael, Kenzie, Matthew, Ketel, Tjeerd, Khanji, Basem, Kharisova, Anastasiia, Kholodenko, Sergei, Khreich, Gaelle, Kirn, Thomas, Kirsebom, Veronica Soelund, Kitouni, Ouail, Klaver, Suzanne, Kleijne, Nico, Klimaszewski, Konrad, Kmiec, Mateusz Rafal, Koliiev, Serhii, Kolk, Lars, Kondybayeva, Almagul, Konoplyannikov, Anatoly, Kopciewicz, Pawel, Kopecna, Renata, Koppenburg, Patrick, Korolev, Mikhail, Kostiuk, Igor, Kot, Oleksander, Kotriakhova, Sofia, Kozachuk, Anastasiia, Kravchenko, Polina, Kravchuk, Leonid, Kreps, Michal, Kretzschmar, Sophie Katharina, Krokovny, Pavel, Krupa, Wojciech, Krzemien, Wojciech, Kubat, Jakub, Kubis, Sebastian Antoni, Kucewicz, Wojciech, Kucharczyk, Marcin, Kudryavtsev, Vasily, Kulikova, Evgenia, Kupsc, Andrzej, Lacarrere, Daniel, Lafferty, George, Lai, Adriano, Lampis, Andrea, Lancierini, Davide, Landesa Gomez, Clara, Lane, John Jake, Lane, Richard, Langenbruch, Christoph, Langer, Jan, Lantwin, Oliver, Latham, Thomas, Lazzari, Federico, Lazzeroni, Cristina, Le Gac, Renaud, Lee, Sook Hyun, Lefèvre, Regis, Leflat, Alexander, Legotin, Sergey, Leroy, Olivier, Lesiak, Tadeusz, Leverington, Blake, Li, Anfeng, Li, Hengne, Li, Kechen, Li, Peilian, Li, Pei-Rong, Li, Shiyang, Li, Tiange, Li, Tianqi, Li, Yiming, Li, Zhuoming, Liang, Xixin, Lin, Chuangxin, Lin, Tai-hua, Lindner, Rolf, Lisovskyi, Vitalii, Litvinov, Roman, Liu, Guoming, Liu, Huanhuan, Liu, Kai, Liu, Qian, Liu, Shuaiyi, Lobo Salvia, Aniol, Loi, Angelo, Lollini, Riccardo, Lomba Castro, Julian, Longstaff, Iain, Lopes, Jose, Lopez Huertas, Albert, López Soliño, Saúl, Lovell, George Holger, Lu, Yu, Lucarelli, Chiara, Lucchesi, Donatella, Luchuk, Stanislav, Lucio Martinez, Miriam, Lukashenko, Valeriia, Luo, Yiheng, Lupato, Anna, Luppi, Eleonora, Lynch, Kate, Lyu, Xiao-Rui, Ma, Ruiting, Maccolini, Serena, Machefert, Frederic, Maciuc, Florin, Mackay, Innes, Macko, Vladimir, Madhan Mohan, Lakshan Ram, Maevskiy, Artem, Maisuzenko, Dmitrii, Majewski, Maciej Witold, Malczewski, Jakub Jacek, Malde, Sneha, Malecki, Bartosz, Malinin, Alexander, Maltsev, Timofei, Manca, Giulia, Mancinelli, Giampiero, Mancuso, Chiara, Manera Escalero, Rafel, Manuzzi, Daniele, Manzari, Claudio Andrea, Marangotto, Daniele, Maratas, Jan Mickelle, Marchand, Jean François, Marconi, Umberto, Mariani, Saverio, Marin Benito, Carla, Marks, Jörg, Marshall, Alexander Mclean, Marshall, Phillip John, Martelli, Gabriele, Martellotti, Giuseppe, Martinazzoli, Loris, Martinelli, Maurizio, Martinez Santos, Diego, Martinez Vidal, Fernando, Massafferri, André, Materok, Marcel, Matev, Rosen, Mathad, Abhijit, Matiunin, Viacheslav, Matteuzzi, Clara, Mattioli, Kara Renee, Mauri, Andrea, Maurice, Emilie, Mauricio, Joan, Mazurek, Michal, McCann, Michael, Mcconnell, Lucas, McGrath, Tamaki Holly, McHugh, Niall Thomas, McNab, Andrew, McNulty, Ronan, Meadows, Brian, Meier, Gerwin, Melnychuk, Dmytro, Meloni, Simone, Merk, Marcel, Merli, Andrea, Meyer Garcia, Lucas, Miao, Dexing, Miao, Han, Mikhasenko, Mikhail, Milanes, Diego Alejandro, Milovanovic, Marko, Minard, Marie-Noelle, Minotti, Alessandro, Minucci, Elisa, Miralles, Tristan, Mitchell, Sara Elizabeth, Mitreska, Biljana, Mitzel, Dominik Stefan, Modak, Atanu, Mödden, Antje, Mohammed, Rizwaan Adeeb, Moise, Razvan-Daniel, Mokhnenko, Sergei, Mombächer, Titus, Monk, Matthew David, Monroy, Igancio Alberto, Monteil, Stephane, Morello, Gianfranco, Morello, Michael Joseph, Morgenthaler, Maurice Pierre, Moron, Jakub, Morris, Adam Benjamin, Morris, Andrew George, Mountain, Raymond, Mu, Hongjie, Muhammad, Emir, Muheim, Franz, Mulder, Mick, Müller, Katharina, Murray, Donal, Murta, Rebecca, Muzzetto, Piera, Naik, Paras, Nakada, Tatsuya, Nandakumar, Raja, Nanut, Tara, Nasteva, Irina, Needham, Matthew, Neri, Nicola, Neubert, Sebastian, Neufeld, Niko, Neustroev, Petr, Newcombe, Ryan, Nicolini, Janina, Nicotra, Davide, Niel, Elisabeth Maria, Nieswand, Simon, Nikitin, Nikolay, Nolte, Niklas Stefan, Normand, Camille, Novoa Fernandez, Julio, Nowak, Gabriel Matthew, Nunez, Cynthia, Oblakowska-Mucha, Agnieszka, Obraztsov, Vladimir, Oeser, Thomas, Okamura, Shinichi, Oldeman, Rudolf, Oliva, Federica, Onderwater, Gerco, O'Neil, Ryunosuke Hugo, Otalora Goicochea, Juan Martin, Ovsiannikova, Tatiana, Owen, Patrick, Oyanguren, Maria Aranzazu, Ozcelik, Ozlem, Padeken, Klaas Ole, Pagare, Bhagyashree, Pais, Preema Rennee, Pajero, Tommaso, Palano, Antimo, Palutan, Matteo, Panshin, Gennady, Paolucci, Lorenzo, Papanestis, Antonios, Pappagallo, Marco, Pappalardo, Luciano, Pappenheimer, Cheryl, Parker, William, Parkes, Christopher, Passalacqua, Barbara, Passaleva, Giovanni, Pastore, Alessandra, Patel, Mitesh, Patrignani, Claudia, Pawley, Christopher James, Pellegrino, Antonio, Pepe Altarelli, Monica, Perazzini, Stefano, Pereima, Dmitrii, Pereiro Castro, Asier, Perret, Pascal, Petridis, Konstantinos, Petrolini, Alessandro, Petrucci, Stefano, Petruzzo, Marco, Pham, Hang, Philippov, Anton, Piandani, Roberto, Pica, Lorenzo, Piccini, Mauro, Pietrzyk, Boleslaw, Pietrzyk, Guillaume, Pinci, Davide, Pisani, Flavio, Pizzichemi, Marco, Placinta, Vlad-Mihai, Plews, Jonathan, Plo Casasus, Maximo, Polci, Francesco, Poli Lener, Marco, Poluektov, Anton, Polukhina, Natalia, Polyakov, Ivan, Polycarpo, Erica, Ponce, Sebastien, Popov, Dmitry, Poslavskii, Stanislav, Prasanth, Kodassery, Promberger, Laura, Prouve, Claire, Pugatch, Valery, Puill, Veronique, Punzi, Giovanni, Qi, Hongrong, Qian, Wenbin, Qin, Ning, Qu, Sanqiang, Quagliani, Renato, Raab, Naomi Veronika, Rachwal, Bartlomiej, Rademacker, Jonas, Rajagopalan, Rohan, Rama, Matteo, Ramos Pernas, Miguel, Rangel, Murilo, Ratnikov, Fedor, Raven, Gerhard, Rebollo De Miguel, Miguel, Redi, Federico, Reich, Jake, Reiss, Florian, Ren, Zan, Resmi, P.K., Ribatti, Roberto, Ricci, Alessandro Maria, Ricciardi, Stefania, Richardson, Kate Abigail, Richardson-Slipper, Mary, Rinnert, Kurt, Robbe, Patrick, Robertson, Gary, Rodrigues, Eduardo, Rodriguez Fernandez, Emilio Xose, Rodriguez Lopez, Jairo Alexis, Rodriguez Rodriguez, Efren, Rolf, David Leonhard, Rollings, Alexandra Paige, Roloff, Philipp, Romanovskiy, Vladimir, Romero Lamas, Marcos, Romero Vidal, Antonio, Rotondo, Marcello, Rudolph, Matthew Scott, Ruf, Thomas, Ruiz Fernandez, Ramon Angel, Ruiz Vidal, Joan, Ryzhikov, Artem, Ryzka, Jakub, Saborido Silva, Juan Jose, Sagidova, Naylya, Sahoo, Niladribihari, Saitta, Biagio, Salomoni, Matteo, Sanchez Gras, Cristina, Sanderswood, Izaac, Santacesaria, Roberta, Santamarina Rios, Cibran, Santimaria, Marco, Santoro, Leonardo, Santovetti, Emanuele, Saranin, Danila, Sarpis, Gediminas, Sarpis, Mindaugas, Sarti, Alessio, Satriano, Celestina, Satta, Alessia, Saur, Miroslav, Savrina, Darya, Sazak, Halime, Scantlebury Smead, Luke George, Scarabotto, Alessandro, Schael, Stefan, Scherl, Sigrid, Schertz, Amy Marie, Schiller, Manuel, Schindler, Heinrich, Schmelling, Michael, Schmidt, Burkhard, Schmitt, Sebastian, Schneider, Olivier, Schopper, Andreas, Schubiger, Maxime, Schulte, Nicole, Schulte, Sebastian, Schune, Marie Helene, Schwemmer, Rainer, Schwering, Georg, Sciascia, Barbara, Sciuccati, Augusto, Sellam, Sara, Semennikov, Alexander, Senghi Soares, Mara, Sergi, Antonino, Serra, Nicola, Sestini, Lorenzo, Seuthe, Alex, Shang, Yiduo, Shangase, Desmond Mzamo, Shapkin, Mikhail, Shchemerov, Ivan, Shchutska, Lesya, Shears, Tara, Shekhtman, Lev, Shen, Zhihong, Sheng, Shuqi, Shevchenko, Vladimir, Shi, Boan, Shields, Edward Brendan, Shimizu, Yuya, Shmanin, Evgenii, Shorkin, Roman, Shupperd, Joseph David, Siddi, Benedetto Gianluca, Silva Coutinho, Rafael, Simi, Gabriele, Simone, Saverio, Singla, Minni, Skidmore, Nicola, Skuza, Raphael, Skwarnicki, Tomasz, Slater, Mark, Smallwood, Jennifer Clare, Smeaton, John Gordon, Smith, Eluned, Smith, Krista Lizbeth, Smith, Mark, Snoch, Aleksandra, Soares Lavra, Lais, Sokoloff, Michael, Soler, Paul, Solomin, Anatoly, Solovev, Aleksandr, Solovyev, Ivan, Song, Rongrong, Souza De Almeida, Felipe Luan, Souza De Paula, Bruno, Spadaro Norella, Elisabetta, Spedicato, Eugenia, Speer, Jannis Guido, Spiridenkov, Eduard, Spradlin, Patrick, Sriskaran, Viros, Stagni, Federico, Stahl, Marian, Stahl, Sascha, Stanislaus, Seophine, Stein, Eloise Noelle, Steinkamp, Olaf, Stenyakin, Oleg, Stevens, Holger, Strekalina, Daria, Su, Yangjie, Suljik, Fidan, Sun, Jiayin, Sun, Liang, Sun, Yipeng, Swallow, Paul Nathaniel, Swientek, Krzysztof, Szabelski, Adam, Szumlak, Tomasz, Szymanski, Maciej Pawel, Tan, Yinghua, Taneja, Shantam, Tat, Martin Duy, Terentev, Aleksandr, Teubert, Frederic, Thomas, Eric, Thompson, Daniel James David, Tilquin, Hanae, Tisserand, Vincent, T'Jampens, Stephane, Tobin, Mark, Tomassetti, Luca, Tonani, Giorgia, Tong, Xingyu, Torres Machado, Diego, Toscano, Luca, Tou, Da Yu, Trippl, Carina, Tuci, Giulia, Tuning, Niels, Ukleja, Artur, Unverzagt, Daniel Joachim, Usachov, Andrii, Ustyuzhanin, Andrey, Uwer, Ulrich, Vagnoni, Vincenzo, Valassi, Andrea, Valenti, Giovanni, Valls Canudas, Nuria, Van Dijk, Maarten, Van Hecke, Hubert, van Herwijnen, Eric, Van Hulse, Charlotte Barbara, van Veghel, Maarten, Vazquez Gomez, Ricardo, Vazquez Regueiro, Pablo, Vázquez Sierra, Carlos, Vecchi, Stefania, Velthuis, Jaap, Veltri, Michele, Venkateswaran, Aravindhan, Vesterinen, Mika, Vieira, Daniel, Vieites Diaz, Maria, Vilasis-Cardona, Xavier, Vilella Figueras, Eva, Villa, Andrea, Vincent, Pascal, Volle, Felicia Carolin, vom Bruch, Dorothea, Vorobyev, Vitaly, Voropaev, Nikolai, Vos, Kimberley, Vrahas, Constantinos, Walsh, John, Walton, Eliot Jane, Wan, Guanyue, Wang, Chishuai, Wang, Ganrong, Wang, Jialu, Wang, Jianchun, Wang, Jianqiao, Wang, Jike, Wang, Mengzhen, Wang, Rui, Wang, Xiaolin, Wang, Yilong, Wang, Zhenzi, Wang, Zirui, Wang, Ziyi, Ward, Jake Alexander, Watson, Nigel, Websdale, David, Wei, Yajing, Westhenry, Benedict Donald C., White, Dylan Jaide, Whitehead, Mark, Wiederhold, Aidan Richard, Wiedner, Dirk, Wilkinson, Guy, Wilkinson, Michael K., Williams, Ifan, Williams, Mike, Williams, Mark Richard James, Williams, Richard Morgan, Wilson, Fergus, Wislicki, Wojciech, Witek, Mariusz, Witola, Lukas, Wong, Cheuk Ping, Wormser, Guy, Wotton, Stephen, Wu, Hangyi, Wu, Jie, Wu, Yanxi, Wyllie, Kenneth, Xiang, Zhiyu, Xie, Yuehong, Xu, Ao, Xu, Jingyi, Xu, Li, Xu, Liangjun, Xu, Menglin, Xu, Qingnian, Xu, Zehua, Xu, Zhihao, Xu, Zijun, Yang, Di, Yang, Shuangli, Yang, Xueting, Yang, Youhua, Yang, Zhenwei, Yang, Zishuo, Yeroshenko, Vsevolod, Yeung, Ho Yin Dereck, Yin, Hang, Yu, Jiesheng, Yuan, Xuhao, Zaffaroni, Ettore, Zavertyaev, Mikhail, Zdybal, Milosz, Zeng, Ming, Zhang, Chenjia, Zhang, Dongliang, Zhang, Jianyu, Zhang, Liming, Zhang, Shulei, Zhang, Shunan, Zhang, Yanxi, Zhang, Yu, Zhao, Ya, Zharkova, Alina, Zhelezov, Alexey, Zheng, Yangheng, Zhou, Tianwen, Zhou, Xiaokang, Zhou, Yixiong, Zhovkovska, Valeriia, Zhu, Xianglei, Zhu, Xiaoyu, Zhu, Zhanwen, Zhukov, Valery, Zhuo, Jiahui, Zou, Quan, Zucchelli, Stefano, Zuliani, Davide, and Zunica, Gianluca
- Subjects
Particle Physics - Experiment - Abstract
A flavor-tagged time-dependent angular analysis of the decay $B_s^{0} \rightarrow \phi\phi$ is performed using $pp$ collision data collected by the LHCb experiment at the center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6fb$^{-1}$. The CP-violating phase and direct CP-violation parameter are measured to be $\phi_s^{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 $ rad and $|\lambda|=1.004\pm 0.030 \pm 0.009 $, respectively, assuming the same values for all polarization states of the $\phi\phi$ system. In these results, the first uncertainties are statistical and the second systematic. These parameters are also determined separately for each polarization state, showing no evidence for polarization dependence. The results are combined with previous LHCb measurements using $pp$ collisions at center-of-mass energies of 7 and 8 TeV, yielding $\phi_s^{s\bar{s}s} = -0.074 \pm 0.069 $ rad and $|\lambda|=1.009 \pm 0.030$. This is the most precise study of time-dependent CP violation in a penguin-dominated $B$ meson decay. The results are consistent with CP symmetry and with the Standard Model predictions. A flavor-tagged time-dependent angular analysis of the decay $B_s^{0}\rightarrow\phi\phi$ is performed using $pp$ collision data collected by the LHCb experiment at $\sqrt{s}=13$ TeV, the center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb^{-1}. The $\it{CP}$-violating phase and direct $\it{CP}$-violation parameter are measured to be $\phi_{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 $ rad and $|\lambda|=1.004\pm 0.030 \pm 0.009 $, respectively, assuming the same values for all polarization states of the $\phi\phi$ system. In these results, the first uncertainties are statistical and the second systematic. These parameters are also determined separately for each polarization state, showing no evidence for polarization dependence. The results are combined with previous LHCb measurements using $pp$ collisions at center-of-mass energies of 7 and 8 TeV, yielding $\phi_{s\bar{s}s} = -0.074 \pm 0.069 $ rad and $|\lambda|=1.009 \pm 0.030$. This is the most precise study of time-dependent $\it{CP} $ violation in a penguin-dominated $B$ meson decay. The results are consistent with $\it{CP} $ symmetry and with the Standard Model predictions.
- Published
- 2023
8. Correlation between blood glucose and cerebrospinal fluid glucose levels in patients with differences in glucose metabolism
- Author
-
Tan, Qing Che, Xing, Xiao Wei, Zhang, Jia Tang, He, Mian Wang, Ma, Yu Bao, Wu, Lei, Wang, Xiaolin, Wang, Hong Fen, and Yu, Sheng Yuan
- Subjects
Neurology ,Neurology (clinical) - Abstract
ObjectivesWe aimed to determine a method to identify normal cerebrospinal fluid (CSF) glucose levels by examining the correlation between blood and CSF glucose levels in patients with normal and abnormal glucose metabolism.MethodsOne hundred ninety-five patients were divided into two groups according to their glucose metabolism. The glucose levels were obtained from CSF and fingertip blood at 6, 5, 4, 3, 2, 1, and 0 h before lumbar puncture. SPSS 22.0 software was used for the statistical analysis.ResultsIn both the normal and abnormal glucose metabolism groups, CSF glucose levels increased with blood glucose levels at 6, 5, 4, 3, 2, 1, and 0 h before lumbar puncture. In the normal glucose metabolism group, the CSF/blood glucose ratio range was 0.35–0.95 at 0–6 h before lumbar puncture, and the CSF/average blood glucose ratio range was 0.43–0.74. In the abnormal glucose metabolism group, the CSF/blood glucose ratio range was 0.25–1.2 at 0–6 h before lumbar puncture, and the CSF/average blood glucose ratio range was 0.33–0.78.ConclusionThe CSF glucose level is influenced by the blood glucose level 6 h before lumbar puncture. In patients with normal glucose metabolism, direct measurement of the CSF glucose level can be used to determine whether the CSF level is normal. However, in patients with abnormal or unclear glucose metabolism, the CSF/average blood glucose ratio should be used to determine whether the CSF glucose level is normal.
- Published
- 2023
9. Precision measurement of $\it{CP} $ violation in the penguin-mediated decay $B_s^{0}\rightarrow\phi\phi$
- Author
-
Aaij, Roel, Abdelmotteleb, Ahmed Sameh Wagih, Abellan Beteta, Carlos, Abudinén, Fernando Jesus, Ackernley, Thomas, Adeva, Bernardo, Adinolfi, Marco, Adlarson, Patrik Harri, Afsharnia, Hossein, Agapopoulou, Christina, Aidala, Christine Angela, Ajaltouni, Ziad, Akar, Simon, Akiba, Kazuyoshi, Albicocco, Pietro, Albrecht, Johannes, Alessio, Federico, Alexander, Michael, Alfonso Albero, Alejandro, Aliouche, Zakariya, Alvarez Cartelle, Paula, Amalric, Renaud, Amato, Sandra, Amey, Jake Lewis, Amhis, Yasmine, An, Liupan, Anderlini, Lucio, Andersson, Martin, Andreianov, Aleksei, Andreotti, Mirco, Andreou, Dimitra, Ao, Dong, Archilli, Flavio, Artamonov, Alexander, Artuso, Marina, Aslanides, Elie, Atzeni, Michele, Audurier, Benjamin, Bachiller Perea, Irene, Bachmann, Sebastian, Bachmayer, Marie, Back, John, Bailly-Reyre, Aurelien, Baladron Rodriguez, Pablo, Balagura, Vladislav, Baldini, Wander, Baptista de Souza Leite, Juan, Barbetti, Matteo, Barlow, Roger, Barsuk, Sergey, Barter, William, Bartolini, Matteo, Baryshnikov, Fedor, Basels, Jan-Marc, Bassi, Giovanni, Batozskaya, Varvara, Batsukh, Baasansuren, Battig, Alexander, Bay, Aurelio, Beck, Anja, Becker, Maik, Bedeschi, Franco, Bediaga, Ignacio, Beiter, Andrew, Belin, Samuel, Bellee, Violaine, Belous, Konstantin, Belov, Ilia, Belyaev, Ivan, Benane, Gaya, Bencivenni, Giovanni, Ben-Haim, Eli, Berezhnoy, Alexander, Bernet, Roland, Bernet Andres, Sergi, Berninghoff, Daniel, Bernstein, Harris Conan, Bertella, Claudia, Bertolin, Alessandro, Betancourt, Christopher, Betti, Federico, Bezshyiko, Iaroslava, Bhom, Jihyun, Bian, Lingzhu, Bieker, Martin Stefan, Biesuz, Nicolo Vladi, Billoir, Pierre, Biolchini, Alice, Birch, Matthew, Bishop, Fionn Caitlin Ros, Bitadze, Alexander, Bizzeti, Andrea, Blago, Michele Piero, Blake, Thomas, Blanc, Frederic, Blank, Jonah Evan, Blusk, Steven, Bobulska, Dana, Bocharnikov, Vladimir, Boelhauve, Julian Alexander, Boente Garcia, Oscar, Boettcher, Thomas, Boldyrev, Alexey, Bolognani, Carolina, Bolzonella, Riccardo, Bondar, Nikolay, Borgato, Federica, Borghi, Silvia, Borsato, Martino, Borsuk, Jozef Tomasz, Bouchiba, Sonia Amina, Bowcock, Themistocles, Boyer, Alexandre, Bozzi, Concezio, Bradley, Matthew John, Braun, Svende, Brea Rodriguez, Alexandre, Breer, Nils, Brodzicka, Jolanta, Brossa Gonzalo, Arnau, Brown, James David, Brundu, Davide, Buonaura, Annarita, Buonincontri, Laura, Burke, Aodhan Tomas, Burr, Christopher, Bursche, Albert, Butkevich, Anatoly, Butter, Jordy Sebastiaan, Buytaert, Jan, Byczynski, Wiktor, Cadeddu, Sandro, Cai, Hao, Calabrese, Roberto, Calefice, Lukas, Cali, Stefano, Calvi, Marta, Calvo Gomez, Miriam, Campana, Pierluigi, Campora Perez, Daniel Hugo, Campoverde Quezada, Angel Fernando, Capelli, Simone, Capriotti, Lorenzo, Carbone, Angelo, Cardinale, Roberta, Cardini, Alessandro, Carniti, Paolo, Carus, Leon David, Casais Vidal, Adrian, Caspary, Rowina, Casse, Gianluigi, Cattaneo, Marco, Cavallero, Giovanni, Cavallini, Viola, Celani, Sara, Cerasoli, Jacopo, Cervenkov, Daniel, Chadwick, Abbie Jane, Chahrour, Ibrahim, Chapman, Matthew George, Charles, Matthew, Charpentier, Philippe, Chavez Barajas, Carlos Alberto, Chefdeville, Maximilien, Chen, Chen, Chen, Shanzhen, Chernov, Aleksei, Chernyshenko, Serhii, Chobanova, Veronika, Cholak, Serhii, Chrzaszcz, Marcin, Chubykin, Aleksei, Chulikov, Vladimir, Ciambrone, Paolo, Cicala, Maria Flavia, Cid Vidal, Xabier, Ciezarek, Gregory, Cifra, Pierfrancesco, Clarke, Peter, Clemencic, Marco, Cliff, Harry, Closier, Joel, Cobbledick, John Leslie, Coco, Victor, Cogan, Julien, Cogneras, Eric, Cojocariu, Lucian, Collins, Paula, Colombo, Tommaso, Congedo, Liliana, Contu, Andrea, Cooke, Naomi, Corredoira, Imanol, Corti, Gloria, Couturier, Benjamin, Craik, Daniel Charles, Cruz Torres, Melissa Maria, Currie, Robert, da Silva, Cesar Luiz, Dadabaev, Shakhzod, Dai, Lingyun, Dai, Xinchen, Dall'Occo, Elena, Dalseno, Jeremy, d'Ambrosio, Carmelo, Daniel, Jessy, Danilina, Anna, d'Argent, Philippe, Davies, Jonathan Edward, Davis, Adam, de Aguiar Francisco, Oscar, de Boer, Jan, de Bruyn, Kristof, de Capua, Stefano, de Cian, Michel, de Freitas Carneiro da Graca, Ulisses, de Lucia, Erika, de Miranda, Jussara, de Paula, Leandro, de Serio, Marilisa, de Simone, Dario, de Simone, Patrizia, de Vellis, Fabio, de Vries, Jacco, Dean, Cameron Thomas, Debernardis, Francesco, Decamp, Daniel, Dedu, Vlad-George, del Buono, Luigi, Delaney, Blaise, Dembinski, Hans Peter, Denysenko, Vadym, Deschamps, Olivier, Dettori, Francesco, Dey, Biplab, Di Nezza, Pasquale, Diachkov, Igor, Didenko, Sergey, Dieste Maronas, Lorena, Ding, Shuchong, Dobishuk, Vasyl, Dolmatov, Aleksandr, Dong, Chenzhi, Donohoe, Amanda May, Dordei, Francesca, dos Reis, Alberto, Douglas, Lauren, Downes, Anthony Gavin, Duda, Piotr Jakub, Dudek, Maciej Wojciech, Dufour, Laurent, Duk, Viacheslav, Durante, Paolo, Duras, Maciej, Durham, John Matthew, Dutta, Deepanwita, Dziurda, Agnieszka, Dzyuba, Alexey, Easo, Sajan, Egede, Ulrik, Egorychev, Artem, Egorychev, Victor, Eirea Orro, Caetano, Eisenhardt, Stephan, Ejopu, Enoch, Ek-In, Surapat, Eklund, Lars, Elashri, Mohamed, Ellbracht, Jan Hendrik, Ely, Scott, Ene, Alexandru, Epple, Eliane, Escher, Stephan, Eschle, Jonas Nathanael, Esen, Sevda, Evans, Timothy, Fabiano, Federica, Falcao, Lucas, Fan, Yanting, Fang, Bo, Fantini, Lisa, Faria, Maria, Farry, Stephen, Fazzini, Davide, Felkowski, Lukasz Jerzy, Feo, Mauricio, Fernandez Gomez, Miguel, Fernez, Alex Daniel, Ferrari, Fabio, Ferreira Lopes, Lino, Ferreira Rodrigues, Fernando, Ferreres Sole, Silvia, Ferrillo, Martina, Ferro-Luzzi, Massimiliano, Filippov, Sergey, Fini, Rosa Anna, Fiorini, Massimiliano, Firlej, Miroslaw, Fischer, Kamil Leszek, Fitzgerald, Dillon Scott, Fitzpatrick, Conor, Fiutowski, Tomasz, Fleuret, Frederic, Fontana, Marianna, Fontanelli, Flavio, Forty, Roger, Foulds-Holt, Daniel, Franco Lima, Vinicius, Franco Sevilla, Manuel, Frank, Markus, Franzoso, Edoardo, Frau, Giulia, Frei, Christoph, Friday, David Anthony, Frontini, Luca, Fu, Jinlin, Fuehring, Quentin, Fulghesu, Tommaso, Gabriel, Emmy, Galati, Giuliana, Galati, Maria Domenica, Gallas Torreira, Abraham, Galli, Domenico, Gambetta, Silvia, Gandelman, Miriam, Gandini, Paolo, Gao, Han, Gao, Rui, Gao, Yang, Gao, Yuanning, Garau, Michela, Garcia Martin, Luis Miguel, Garcia Moreno, Paula, García Pardiñas, Julián, Garcia Plana, Beatriz, Garcia Rosales, Felipe Andres, Garrido, Lluis, Gaspar, Clara, Geertsema, Robbert Erik, Gerick, David, Gerken, Louis Lenard, Gersabeck, Evelina, Gersabeck, Marco, Gershon, Timothy, Giambastiani, Luca, Gibson, Valerie, Giemza, Henryk Karol, Gilman, Alexander Leon, Giovannetti, Matteo, Gioventù, Alessandra, Gironella Gironell, Pere, Giugliano, Carmen, Giza, Maciej Artur, Gizdov, Konstantin, Gkougkousis, Evangelos Leonidas, Gligorov, Vladimir, Göbel, Carla, Golobardes, Elisabet, Golubkov, Dmitry, Golutvin, Andrey, Gomes, Alvaro, Gomez Fernandez, Sergio, Goncalves Abrantes, Fernanda, Goncerz, Mateusz, Gong, Guanghua, Gorelov, Igor Vladimirovich, Gotti, Claudio, Grabowski, Jascha Peter, Grammatico, Thomas, Granado Cardoso, Luis Alberto, Graugés, Eugeni, Graverini, Elena, Graziani, Giacomo, Grecu, Alexandru Tudor, Greeven, Lex Marinus, Grieser, Nathan Allen, Grillo, Lucia, Gromov, Sergey, Gu, Chenxi, Guarise, Marco, Guittiere, Manuel, Guliaeva, Vasilisa, Günther, Paul Andre, Guseinov, Abdul-Kerim, Gushchin, Evgeny, Guz, Yury, Gys, Thierry, Hadavizadeh, Thomas, Hadjivasiliou, Christos, Haefeli, Guido, Haen, Christophe, Haimberger, Jakob, Haines, Susan, Halewood-Leagas, Tabitha, Halvorsen, Marius Maehlum, Hamilton, Phoebe Meredith, Hammerich, Jan, Han, Qundong, Han, Xiaoxue, Hansmann-Menzemer, Stephanie, Harnew, Neville, Harrison, Thomas, Hasse, Christoph, Hatch, Mark, He, Jibo, Heijhoff, Kevin, Hemmer, Frederic, Henderson, Conor, Henderson, Riley Dylan Leslie, Hennequin, Arthur Marius, Hennessy, Karol, Henry, Louis, Herd, James Daniel, Heuel, Johannes, Hicheur, Adlène, Hill, Donal, Hilton, Martha, Hollitt, Sophie, Horswill, Joshua Ethan, Hou, Ruiwen, Hou, Yingrui, Hu, Jiangqiao, Hu, Jifeng, Hu, Wenhua, Hu, Xiaofan, Huang, Wenqian, Huang, Xiaotao, Hulsbergen, Wouter, Hunter, Ross John, Hushchyn, Mikhail, Hutchcroft, David, Ibis, Philipp, Idzik, Marek, Ilin, Dmitrii, Ilten, Philip, Inglessi, Alexander, Iniukhin, Aleksandr, Ishteev, Artur, Ivshin, Kuzma, Jacobsson, Richard, Jage, Hendrik, Jaimes Elles, Sergio Javier, Jakobsen, Sune, Jans, Eddy, Jashal, Brij Kishor, Jawahery, Abolhassan, Jevtic, Vukan, Jiang, Emily Kaiyin, Jiang, Xiaojie, Jiang, Yi, John, Malcolm, Johnson, Daniel, Jones, Christopher, Jones, Thomas Peter, Joshi, Salil, Jost, Beat, Jurik, Nathan, Juszczak, Izabela, Kandybei, Sergii, Kang, Youen, Karacson, Matthias, Karpenkov, Dmitrii, Karpov, Maksim, Kautz, Jacob William, Keizer, Floris, Keller, Dustin Michael, Kenzie, Matthew, Ketel, Tjeerd, Khanji, Basem, Kharisova, Anastasiia, Kholodenko, Sergei, Khreich, Gaelle, Kirn, Thomas, Kirsebom, Veronica Soelund, Kitouni, Ouail, Klaver, Suzanne, Kleijne, Nico, Klimaszewski, Konrad, Kmiec, Mateusz Rafal, Koliiev, Serhii, Kolk, Lars, Kondybayeva, Almagul, Konoplyannikov, Anatoly, Kopciewicz, Pawel, Kopecna, Renata, Koppenburg, Patrick, Korolev, Mikhail, Kostiuk, Igor, Kot, Oleksander, Kotriakhova, Sofia, Kozachuk, Anastasiia, Kravchenko, Polina, Kravchuk, Leonid, Kreps, Michal, Kretzschmar, Sophie Katharina, Krokovny, Pavel, Krupa, Wojciech, Krzemien, Wojciech, Kubat, Jakub, Kubis, Sebastian Antoni, Kucewicz, Wojciech, Kucharczyk, Marcin, Kudryavtsev, Vasily, Kulikova, Evgenia, Kupsc, Andrzej, Lacarrere, Daniel, Lafferty, George, Lai, Adriano, Lampis, Andrea, Lancierini, Davide, Landesa Gomez, Clara, Lane, John Jake, Lane, Richard, Langenbruch, Christoph, Langer, Jan, Lantwin, Oliver, Latham, Thomas, Lazzari, Federico, Lazzeroni, Cristina, Le Gac, Renaud, Lee, Sook Hyun, Lefèvre, Regis, Leflat, Alexander, Legotin, Sergey, Leroy, Olivier, Lesiak, Tadeusz, Leverington, Blake, Li, Anfeng, Li, Hengne, Li, Kechen, Li, Peilian, Li, Pei-Rong, Li, Shiyang, Li, Tiange, Li, Tianqi, Li, Yiming, Li, Zhuoming, Liang, Xixin, Lin, Chuangxin, Lin, Tai-Hua, Lindner, Rolf, Lisovskyi, Vitalii, Litvinov, Roman, Liu, Guoming, Liu, Huanhuan, Liu, Kai, Liu, Qian, Liu, Shuaiyi, Lobo Salvia, Aniol, Loi, Angelo, Lollini, Riccardo, Lomba Castro, Julian, Longstaff, Iain, Lopes, Jose, Lopez Huertas, Albert, López Soliño, Saúl, Lovell, George Holger, Lu, Yu, Lucarelli, Chiara, Lucchesi, Donatella, Luchuk, Stanislav, Lucio Martinez, Miriam, Lukashenko, Valeriia, Luo, Yiheng, Lupato, Anna, Luppi, Eleonora, Lynch, Kate, Lyu, Xiao-Rui, Ma, Ruiting, Maccolini, Serena, Machefert, Frederic, Maciuc, Florin, Mackay, Innes, Macko, Vladimir, Madhan Mohan, Lakshan Ram, Maevskiy, Artem, Maisuzenko, Dmitrii, Majewski, Maciej Witold, Malczewski, Jakub Jacek, Malde, Sneha, Malecki, Bartosz, Malinin, Alexander, Maltsev, Timofei, Manca, Giulia, Mancinelli, Giampiero, Mancuso, Chiara, Manera Escalero, Rafel, Manuzzi, Daniele, Manzari, Claudio Andrea, Marangotto, Daniele, Maratas, Jan Mickelle, Marchand, Jean François, Marconi, Umberto, Mariani, Saverio, Marin Benito, Carla, Marks, Jörg, Marshall, Alexander Mclean, Marshall, Phillip John, Martelli, Gabriele, Martellotti, Giuseppe, Martinazzoli, Loris, Martinelli, Maurizio, Martinez Santos, Diego, Martinez Vidal, Fernando, Massafferri, André, Materok, Marcel, Matev, Rosen, Mathad, Abhijit, Matiunin, Viacheslav, Matteuzzi, Clara, Mattioli, Kara Renee, Mauri, Andrea, Maurice, Emilie, Mauricio, Joan, Mazurek, Michal, Mccann, Michael, Mcconnell, Lucas, Mcgrath, Tamaki Holly, Mchugh, Niall Thomas, Mcnab, Andrew, Mcnulty, Ronan, Meadows, Brian, Meier, Gerwin, Melnychuk, Dmytro, Meloni, Simone, Merk, Marcel, Merli, Andrea, Meyer Garcia, Lucas, Miao, Dexing, Miao, Han, Mikhasenko, Mikhail, Milanes, Diego Alejandro, Milovanovic, Marko, Minard, Marie-Noelle, Minotti, Alessandro, Minucci, Elisa, Miralles, Tristan, Mitchell, Sara Elizabeth, Mitreska, Biljana, Mitzel, Dominik Stefan, Modak, Atanu, Mödden, Antje, Mohammed, Rizwaan Adeeb, Moise, Razvan-Daniel, Mokhnenko, Sergei, Mombächer, Titus, Monk, Matthew David, Monroy, Igancio Alberto, Monteil, Stephane, Morello, Gianfranco, Morello, Michael Joseph, Morgenthaler, Maurice Pierre, Moron, Jakub, Morris, Adam Benjamin, Morris, Andrew George, Mountain, Raymond, Mu, Hongjie, Muhammad, Emir, Muheim, Franz, Mulder, Mick, Müller, Katharina, Murray, Donal, Murta, Rebecca, Muzzetto, Piera, Naik, Paras, Nakada, Tatsuya, Nandakumar, Raja, Nanut, Tara, Nasteva, Irina, Needham, Matthew, Neri, Nicola, Neubert, Sebastian, Neufeld, Niko, Neustroev, Petr, Newcombe, Ryan, Nicolini, Janina, Nicotra, Davide, Niel, Elisabeth Maria, Nieswand, Simon, Nikitin, Nikolay, Nolte, Niklas Stefan, Normand, Camille, Novoa Fernandez, Julio, Nowak, Gabriel Matthew, Nunez, Cynthia, Oblakowska-Mucha, Agnieszka, Obraztsov, Vladimir, Oeser, Thomas, Okamura, Shinichi, Oldeman, Rudolf, Oliva, Federica, Onderwater, Gerco, O'Neil, Ryunosuke Hugo, Otalora Goicochea, Juan Martin, Ovsiannikova, Tatiana, Owen, Patrick, Oyanguren, Maria Aranzazu, Ozcelik, Ozlem, Padeken, Klaas Ole, Pagare, Bhagyashree, Pais, Preema Rennee, Pajero, Tommaso, Palano, Antimo, Palutan, Matteo, Panshin, Gennady, Paolucci, Lorenzo, Papanestis, Antonios, Pappagallo, Marco, Pappalardo, Luciano, Pappenheimer, Cheryl, Parker, William, Parkes, Christopher, Passalacqua, Barbara, Passaleva, Giovanni, Pastore, Alessandra, Patel, Mitesh, Patrignani, Claudia, Pawley, Christopher James, Pellegrino, Antonio, Pepe Altarelli, Monica, Perazzini, Stefano, Pereima, Dmitrii, Pereiro Castro, Asier, Perret, Pascal, Petridis, Konstantinos, Petrolini, Alessandro, Petrucci, Stefano, Petruzzo, Marco, Pham, Hang, Philippov, Anton, Piandani, Roberto, Pica, Lorenzo, Piccini, Mauro, Pietrzyk, Boleslaw, Pietrzyk, Guillaume, Pinci, Davide, Pisani, Flavio, Pizzichemi, Marco, Placinta, Vlad-Mihai, Plews, Jonathan, Plo Casasus, Maximo, Polci, Francesco, Poli Lener, Marco, Poluektov, Anton, Polukhina, Natalia, Polyakov, Ivan, Polycarpo, Erica, Ponce, Sebastien, Popov, Dmitry, Poslavskii, Stanislav, Prasanth, Kodassery, Promberger, Laura, Prouve, Claire, Pugatch, Valery, Puill, Veronique, Punzi, Giovanni, Qi, Hongrong, Qian, Wenbin, Qin, Ning, Qu, Sanqiang, Quagliani, Renato, Raab, Naomi Veronika, Rachwal, Bartlomiej, Rademacker, Jonas, Rajagopalan, Rohan, Rama, Matteo, Ramos Pernas, Miguel, Rangel, Murilo, Ratnikov, Fedor, Raven, Gerhard, Rebollo de Miguel, Miguel, Redi, Federico, Reich, Jake, Reiss, Florian, Ren, Zan, Resmi, P.K, Ribatti, Roberto, Ricci, Alessandro Maria, Ricciardi, Stefania, Richardson, Kate Abigail, Richardson-Slipper, Mary, Rinnert, Kurt, Robbe, Patrick, Robertson, Gary, Rodrigues, Eduardo, Rodriguez Fernandez, Emilio Xose, Rodriguez Lopez, Jairo Alexis, Rodriguez Rodriguez, Efren, Rolf, David Leonhard, Rollings, Alexandra Paige, Roloff, Philipp, Romanovskiy, Vladimir, Romero Lamas, Marcos, Romero Vidal, Antonio, Rotondo, Marcello, Rudolph, Matthew Scott, Ruf, Thomas, Ruiz Fernandez, Ramon Angel, Ruiz Vidal, Joan, Ryzhikov, Artem, Ryzka, Jakub, Saborido Silva, Juan Jose, Sagidova, Naylya, Sahoo, Niladribihari, Saitta, Biagio, Salomoni, Matteo, Sanchez Gras, Cristina, Sanderswood, Izaac, Santacesaria, Roberta, Santamarina Rios, Cibran, Santimaria, Marco, Santoro, Leonardo, Santovetti, Emanuele, Saranin, Danila, Sarpis, Gediminas, Sarpis, Mindaugas, Sarti, Alessio, Satriano, Celestina, Satta, Alessia, Saur, Miroslav, Savrina, Darya, Sazak, Halime, Scantlebury Smead, Luke George, Scarabotto, Alessandro, Schael, Stefan, Scherl, Sigrid, Schertz, Amy Marie, Schiller, Manuel, Schindler, Heinrich, Schmelling, Michael, Schmidt, Burkhard, Schmitt, Sebastian, Schneider, Olivier, Schopper, Andreas, Schubiger, Maxime, Schulte, Nicole, Schulte, Sebastian, Schune, Marie Helene, Schwemmer, Rainer, Schwering, Georg, Sciascia, Barbara, Sciuccati, Augusto, Sellam, Sara, Semennikov, Alexander, Senghi Soares, Mara, Sergi, Antonino, Serra, Nicola, Sestini, Lorenzo, Seuthe, Alex, Shang, Yiduo, Shangase, Desmond Mzamo, Shapkin, Mikhail, Shchemerov, Ivan, Shchutska, Lesya, Shears, Tara, Shekhtman, Lev, Shen, Zhihong, Sheng, Shuqi, Shevchenko, Vladimir, Shi, Boan, Shields, Edward Brendan, Shimizu, Yuya, Shmanin, Evgenii, Shorkin, Roman, Shupperd, Joseph David, Siddi, Benedetto Gianluca, Silva Coutinho, Rafael, Simi, Gabriele, Simone, Saverio, Singla, Minni, Skidmore, Nicola, Skuza, Raphael, Skwarnicki, Tomasz, Slater, Mark, Smallwood, Jennifer Clare, Smeaton, John Gordon, Smith, Eluned, Smith, Krista Lizbeth, Smith, Mark, Snoch, Aleksandra, Soares Lavra, Lais, Sokoloff, Michael, Soler, Paul, Solomin, Anatoly, Solovev, Aleksandr, Solovyev, Ivan, Song, Rongrong, Souza de Almeida, Felipe Luan, Souza de Paula, Bruno, Spadaro Norella, Elisabetta, Spedicato, Eugenia, Speer, Jannis Guido, Spiridenkov, Eduard, Spradlin, Patrick, Sriskaran, Viros, Stagni, Federico, Stahl, Marian, Stahl, Sascha, Stanislaus, Seophine, Stein, Eloise Noelle, Steinkamp, Olaf, Stenyakin, Oleg, Stevens, Holger, Strekalina, Daria, Su, Yangjie, Suljik, Fidan, Sun, Jiayin, Sun, Liang, Sun, Yipeng, Swallow, Paul Nathaniel, Swientek, Krzysztof, Szabelski, Adam, Szumlak, Tomasz, Szymanski, Maciej Pawel, Tan, Yinghua, Taneja, Shantam, Tat, Martin Duy, Terentev, Aleksandr, Teubert, Frederic, Thomas, Eric, Thompson, Daniel James David, Tilquin, Hanae, Tisserand, Vincent, t'Jampens, Stephane, Tobin, Mark, Tomassetti, Luca, Tonani, Giorgia, Tong, Xingyu, Torres Machado, Diego, Toscano, Luca, Tou, da Yu, Trippl, Carina, Tuci, Giulia, Tuning, Niels, Ukleja, Artur, Unverzagt, Daniel Joachim, Usachov, Andrii, Ustyuzhanin, Andrey, Uwer, Ulrich, Vagnoni, Vincenzo, Valassi, Andrea, Valenti, Giovanni, Valls Canudas, Nuria, van Dijk, Maarten, van Hecke, Hubert, van Herwijnen, Eric, van Hulse, Charlotte Barbara, van Veghel, Maarten, Vazquez Gomez, Ricardo, Vazquez Regueiro, Pablo, Vázquez Sierra, Carlos, Vecchi, Stefania, Velthuis, Jaap, Veltri, Michele, Venkateswaran, Aravindhan, Vesterinen, Mika, Vieira, Daniel, Vieites Diaz, Maria, Vilasis-Cardona, Xavier, Vilella Figueras, Eva, Villa, Andrea, Vincent, Pascal, Volle, Felicia Carolin, Vom Bruch, Dorothea, Vorobyev, Vitaly, Voropaev, Nikolai, Vos, Kimberley, Vrahas, Constantinos, Walsh, John, Walton, Eliot Jane, Wan, Guanyue, Wang, Chishuai, Wang, Ganrong, Wang, Jialu, Wang, Jianchun, Wang, Jianqiao, Wang, Jike, Wang, Mengzhen, Wang, Rui, Wang, Xiaolin, Wang, Yilong, Wang, Zhenzi, Wang, Zirui, Wang, Ziyi, Ward, Jake Alexander, Watson, Nigel, Websdale, David, Wei, Yajing, Westhenry, Benedict Donald C, White, Dylan Jaide, Whitehead, Mark, Wiederhold, Aidan Richard, Wiedner, Dirk, Wilkinson, Guy, Wilkinson, Michael K, Williams, Ifan, Williams, Mike, Williams, Mark Richard James, Williams, Richard Morgan, Wilson, Fergus, Wislicki, Wojciech, Witek, Mariusz, Witola, Lukas, Wong, Cheuk Ping, Wormser, Guy, Wotton, Stephen, Wu, Hangyi, Wu, Jie, Wu, Yanxi, Wyllie, Kenneth, Xiang, Zhiyu, Xie, Yuehong, Xu, Ao, Xu, Jingyi, Xu, Li, Xu, Liangjun, Xu, Menglin, Xu, Qingnian, Xu, Zehua, Xu, Zhihao, Xu, Zijun, Yang, Di, Yang, Shuangli, Yang, Xueting, Yang, Youhua, Yang, Zhenwei, Yang, Zishuo, Yeroshenko, Vsevolod, Yeung, Ho Yin Dereck, Yin, Hang, Yu, Jiesheng, Yuan, Xuhao, Zaffaroni, Ettore, Zavertyaev, Mikhail, Zdybal, Milosz, Zeng, Ming, Zhang, Chenjia, Zhang, Dongliang, Zhang, Jianyu, Zhang, Liming, Zhang, Shulei, Zhang, Shunan, Zhang, Yanxi, Zhang, Yu, Zhao, Ya, Zharkova, Alina, Zhelezov, Alexey, Zheng, Yangheng, Zhou, Tianwen, Zhou, Xiaokang, Zhou, Yixiong, Zhovkovska, Valeriia, Zhu, Xianglei, Zhu, Xiaoyu, Zhu, Zhanwen, Zhukov, Valery, Zhuo, Jiahui, Zou, Quan, Zucchelli, Stefano, Zuliani, Davide, Zunica, Gianluca, Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), and LHCb
- Subjects
p p: scattering ,Phi(1020): pair production ,precision measurement ,13000 GeV-cms ,+2Phi%281020%29%22">B/s0 --> 2Phi(1020) ,amplitude analysis: penguin ,asymmetry: time dependence ,LHC-B ,asymmetry: CP ,scattering amplitude: interference ,High Energy Physics - Experiment ,polarization: dependence ,B/s0 anti-B/s0: mixing ,error: statistical ,CERN LHC Coll ,B/s0: hadronic decay ,CP: violation ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,p p: colliding beams ,B/s0: rare decay ,experimental results - Abstract
A flavor-tagged time-dependent angular analysis of the decay $B_s^{0}\rightarrow\phi\phi$ is performed using $pp$ collision data collected by the LHCb experiment at $\sqrt{s}=13$ TeV, the center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb^{-1}. The $\it{CP}$-violating phase and direct $\it{CP}$-violation parameter are measured to be $\phi_{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 $ rad and $|\lambda|=1.004\pm 0.030 \pm 0.009 $, respectively, assuming the same values for all polarization states of the $\phi\phi$ system. In these results, the first uncertainties are statistical and the second systematic. These parameters are also determined separately for each polarization state, showing no evidence for polarization dependence. The results are combined with previous LHCb measurements using $pp$ collisions at center-of-mass energies of 7 and 8 TeV, yielding $\phi_{s\bar{s}s} = -0.074 \pm 0.069 $ rad and $|\lambda|=1.009 \pm 0.030$. This is the most precise study of time-dependent $\it{CP} $ violation in a penguin-dominated $B$ meson decay. The results are consistent with $\it{CP} $ symmetry and with the Standard Model predictions., Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-001.html (LHCb public pages)
- Published
- 2023
10. Neutral-Point-Clamped Five-Level Inverter With Self-Balanced Switched Capacitor
- Author
-
Shaojun Chen, Teke Hua, Yuanmao Ye, and Wang Xiaolin
- Subjects
Computer science ,business.industry ,020208 electrical & electronic engineering ,Electrical engineering ,02 engineering and technology ,AC power ,Switched capacitor ,Grid ,Network topology ,law.invention ,Capacitor ,Control and Systems Engineering ,Filter (video) ,law ,0202 electrical engineering, electronic engineering, information engineering ,Inverter ,Electrical and Electronic Engineering ,business ,Voltage - Abstract
In this paper, a new 5-level inverter is developed by inserting a switched-capacitor (SC) unit into the traditional 3-level neutral-point-clamped (NPC) inverter phase-leg. The SC unit consists of two capacitors and one bidirectional switch, all of which withstand a quarter of the dc input voltage. Whilst increasing the output levels, the performance is also improved in terms of power loss, common-mode voltage, switching stress dv/dt and output filter. Compared to other 5-level inverters like the conventional NPC and active NPC 5-level topologies, the new solution not only reduces the number of components and simplifies the design, but also has the advantage of self-balanced capacitor voltages. The analysis, simulation and experiment indicate that the proposed inverter is suitable for a wide range of applications like renewable source grid-connected interfaces and motor drivers. Simulation and experimental results of grid-connected operation verify that the new inverter is capable of providing both active and reactive power to the grid. Its excellent performance is also experimentally evaluated by a 1.2 kW prototype and the measured efficiency is above 97% for a wide range of load.
- Published
- 2022
11. A Small-Satellite-Mounted 256-Element Ka-Band CMOS Phased-Array Transmitter Achieving 63.8dBm EIRP Under 26.6W Power Consumption Using Single/Dual Circular Polarization Active Coupler
- Author
-
YOU, Dongwon, You, Dongwon, Fu, Xi, Wang, Xiaolin, GAO, YUAN, Gao, Yuan, Wang, Wenqian, Sakamaki, Jun, HERDIAN, HANS, Herdian, Hans, Kato, Sena, Ide, Michihiro, Zhang, Yuncheng, Fadila, Ashbir Aviat, Li, Zheng, WANG, Chun, Wang, Chun, Wang, Yun, Higaki, Makoto, Inoue, Soichiro, Tomura, Takashi, Pang, Jian, Jian, Pang, Sakai, Hiroyuki, Okada, Kenichi, and Shirane, Atsushi
- Published
- 2023
12. A 2.95mW/element Ka-band CMOS Phased-Array Receiver Utilizing On-Chip Distributed Radiation Sensors in Low Earth Orbit Small Satellite Constellation
- Author
-
Fu, Xi, YOU, Dongwon, You, Dongwon, Wang, Xiaolin, Ide, Michihiro, Zhang, Yuncheng, Sakamaki, Jun, Li, Zheng, Wang, Yun, Higaki, Makoto, Inoue, Soichiro, Tomura, Takashi, Pang, Jian, Jian, Pang, Sakai, Hiroyuki, Okada, Kenichi, and Shirane, Atsushi
- Published
- 2023
13. Associative analysis of multi-omics data indicates that acetylation modification is widely involved in cigarette smoke-induced chronic obstructive pulmonary disease
- Author
-
Gao, Junyin, Liu, Hongjun, Wang, Xiaolin, Wang, Liping, Gu, Jianjun, Wang, Yuxiu, Yang, Zhiguang, Liu, Yunpeng, Yang, Jingjing, Cai, Zhibin, Shu, Yusheng, and Min, Lingfeng
- Subjects
General Medicine - Abstract
We aimed to study the molecular mechanisms of chronic obstructive pulmonary disease (COPD) caused by cigarette smoke more comprehensively and systematically through different perspectives and aspects and to explore the role of protein acetylation modification in COPD. We established the COPD model by exposing C57BL/6J mice to cigarette smoke for 24 weeks, then analyzed the transcriptomics, proteomics, and acetylomics data of mouse lung tissue by RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), and associated these omics data through unique algorithms. This study demonstrated that the differentially expressed proteins and acetylation modification in the lung tissue of COPD mice were co-enriched in pathways such as oxidative phosphorylation (OXPHOS) and fatty acid degradation. A total of 19 genes, namely, ENO3, PFKM, ALDOA, ACTN2, FGG, MYH1, MYH3, MYH8, MYL1, MYLPF, TTN, ACTA1, ATP2A1, CKM, CORO1A, EEF1A2, AKR1B8, MB, and STAT1, were significantly and differentially expressed at all the three levels of transcription, protein, and acetylation modification simultaneously. Then, we assessed the distribution and expression in different cell subpopulations of these 19 genes in the lung tissues of patients with COPD by analyzing data from single-cell RNA sequencing (scRNA-seq). Finally, we carried out the in vivo experimental verification using mouse lung tissue through quantitative real-time PCR (qRT-PCR), Western blotting (WB), immunofluorescence (IF), and immunoprecipitation (IP). The results showed that the differential acetylation modifications of mouse lung tissue are widely involved in cigarette smoke-induced COPD. ALDOA is significantly downregulated and hyperacetylated in the lung tissues of humans and mice with COPD, which might be a potential biomarker for the diagnosis and/or treatment of COPD.
- Published
- 2023
14. Additional file 2 of Should migraine without aura be further divided? A study of 1444 female patients with migraine without aura
- Author
-
Wang, Xiaolin, Na, Weinan, Yang, Ying, Zhang, Wenwen, Zhao, Junxia, Zhang, Tingting, Zhou, Yuanji, Liu, Hua, Zhao, Dong, and Yu, Shengyuan
- Abstract
Additional file 2.
- Published
- 2023
- Full Text
- View/download PDF
15. Additional file 1 of Verification of a clinical decision support system for the diagnosis of headache disorders based on patient–computer interactions: a multi-center study
- Author
-
Han, Xun, Wan, Dongjun, Zhang, Shuhua, Yin, Ziming, Huang, Siyang, Xie, Fengbo, Guo, Junhong, Qu, Hongli, Yao, Yuanrong, Xu, Huifang, Li, Dongfang, Chen, Sufen, Wang, Faming, Wang, Hebo, Chen, Chunfu, He, Qiu, Dong, Ming, Wan, Qi, Xu, Yanmei, Chen, Min, Yan, Fanhong, Wang, Xiaolin, Wang, Rongfei, Zhang, Mingjie, Ran, Ye, Jia, Zhihua, Liu, Yinglu, Chen, Xiaoyan, Hou, Lei, Zhao, Dengfa, Dong, Zhao, and Yu, Shengyuan
- Abstract
Additional file 1. Satisfaction Survey Questions.
- Published
- 2023
- Full Text
- View/download PDF
16. Additional file 4 of Should migraine without aura be further divided? A study of 1444 female patients with migraine without aura
- Author
-
Wang, Xiaolin, Na, Weinan, Yang, Ying, Zhang, Wenwen, Zhao, Junxia, Zhang, Tingting, Zhou, Yuanji, Liu, Hua, Zhao, Dong, and Yu, Shengyuan
- Abstract
Additional file 4.
- Published
- 2023
- Full Text
- View/download PDF
17. Additional file 2 of CircNFATC3 promotes the proliferation of gastric cancer through binding to IGF2BP3 and restricting its ubiquitination to enhance CCND1 mRNA stability
- Author
-
Yang, Feifei, Ma, Qiang, Huang, Bo, Wang, Xiaolin, Pan, Xiaojuan, Yu, Ting, Ran, Lingyu, Jiang, Shan, Li, Haiping, Chen, Ye, Liu, Yuying, Liang, Ce, Ren, Junwu, Zhang, Yuying, Wang, Shimin, Li, Wei, and Xiao, Bin
- Abstract
Additional file 2: Fig. S1. The expression of circELK4, circARID1A, circFNDC3B, and circNFATC3 in GC tissues and corresponding adjacent tissues (n=16). The P-values were calculated using the Mann-Whitney U test. ns, not significant, **P < 0.01. Fig. S2. CircNFATC3 sequencing results of GC tissues and the corresponding adjacent tissues, as well as results from SGC7901 and BGC823 cell lines. Fig. S3. Effect of circNFATC3 knockdown on the expression levels of circNFATC3 or NFATC3 mRNA in GC cells. A The interference efficiency of si-circNFATC3-1 and si-circNFATC3-2 in SGC7901 and BGC823 cells. B The expression of NFATC3 mRNA in SGC7901 and BGC823 cells treated with circNFATC3 knockdown by siRNAs. The P-values were calculated using Student’s t test. ns, not significant, *P < 0.05, **P < 0.01. Fig. S4. Knockdown efficiency of IGF2BP3 and circNFATC3 in SGC7901 and BGC823 cells. A The expression of IGF2BP3 in SGC7901 and BGC823 cells after IGF2BP3 knockdown by siRNA. B The expression of circNFATC3 in SGC7901 and BGC823 cells after circNFATC3 knockdown by siRNA. The P-values were calculated using Student’s t test. **P < 0.01, ***P < 0.001. Fig. S5. Effect of circNFATC3 knockdown by si-circNFATC3-1 on proliferation of GC cells. A The viability of SGC7901 and BGC823 cells after transfected with si-circNFATC3-1. B Plate colony formation of SGC7901 and BGC823 cells after transfected with si-circNFATC3-1. C The EdU assay of SGC7901 and BGC823 cells after transfected with si-circNFATC3-1. The P-values were calculated using Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001. Fig. S6. Effect of circNFATC3 stable knockdown on the proliferation of SGC7901 cells. (A) Efficiency of lentivirus sh-circNFATC3 transduction in SGC7901 cells. (B) Cell viability of SGC7901 cell following circNFATC3 stable knockdown. (C) Plate colony formation assay of SGC7901 cells with circNFATC3 stable knockdown. (D) The EdU assay of SGC7901 cells with circNFATC3 stable knockdown. The P-values were calculated using Student’s t test. **P < 0.01, ***P < 0.001. Fig. S7. Overexpression of circNFATC3 in GC cells by using different vectors. A-B Plasmid profile of pLC5-ciR (A) and overexpression efficiency of circNFATC3 in SGC7901 and BGC823 cells, as well as linear product of circNFATC3 in SGC7901 cells (B). C-D Plasmid profile of pcDNA3.1(+) CircRNA Mini Vector (C) and overexpression efficiency of circNFATC3 in SGC7901 and BGC823 cells, as well as linear product of circNFATC3 in BGC823 cells (D). E-F Plasmid profile of pCD-ciR (E) and overexpression efficiency of circNFATC3 or linear product in SGC7901 cells (F). G The overexpression of pLC5-ciR-circPDHK1 in SGC7901 and BGC823 cells. H The overexpression of pCD-ciR-circTNPO3 in SGC7901 and BGC823 cells. The P-values were calculated using Student’s t test. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001. Fig. S8. Regulation of circNFATC3 and IGF2BP3 to each other in GC cells. A-B The expression of IGF2BP3 at RNA (A) and protein (B) level in SGC7901 and BGC823 cells transfected with si-IGF2BP3. C The expression of circNFATC3 in SGC7901 and BGC823 cells after IGF2BP3 knockdown. D-E The expression of IGF2BP3 at RNA (D) and protein (E) level in SGC7901 and BGC823 cells transfected with pCDH-IGF2BP3. F The expression of circNFATC3 in SGC7901 and BGC823 cells after IGF2BP3 overexpression. G The expression of IGF2BP3 at RNA level in SGC7901 and BGC823 cells after circNFATC3 knockdown. The P-values were calculated using Student’s t test. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001. Fig. S9. Quantitative analysis of IGF2BP3 protein stability after circNFATC3 knockdown in SGC7901 and BGC823. Fig. S10. Expression of LC3 in SGC7901 and BGC823 cells after circNFATC3 knockdown. Fig. S11. Overexpression efficiency of TRIM25 (HA-tagged) and IGF2BP3 truncations (GFP-tagged) in SGC7901 and BGC823 cells. Fig. S12. Expression of RCC2, ARL6IP1, CCND1, and MUC13 mRNA in SGC7901 and BGC823 cells treated with si-IGF2BP3, pCDH-IGF2BP3, or si-circNFATC3. A Expression of RCC2, ARL6IP1, CCND1, and MUC13 mRNA in SGC7901 and BGC823 after IGF2BP3 knockdown. B Expression of RCC2, ARL6IP1, CCND1, and MUC13 mRNA in SGC7901 and BGC823 treated with IGF2BP3 overexpression. C Expression of RCC2, ARL6IP1, CCND1, and MUC13 mRNA in SGC7901 and BGC823 after circNFATC3 knockdown. The P-values were calculated using Student’s t test. ns, not significant, *P < 0.05, **P < 0.01,***P < 0.001. Fig. S13. The proliferation of SGC7901 and BGC823 cells after CCND1 knockdown. A The viability of SGC7901 and BGC823 cells transfected with si-CCND1. B Plate colony formation of SGC7901 and BGC823 cells transfected with si-CCND1. C The EdU assay of SGC7901 and BGC823 cells transfected with si-CCND1. The P-values were calculated using Student’s t test. *P < 0.05, **P < 0.01,***P < 0.001. Fig. S14. Expression of CCND1 protein in SGC7901 and BGC823 cells transfected with blank vector or pCDH-CCND1 and co-transfected with NC or circNFATC3 siRNA. Fig. S15. Expression of circNFATC3 and CCND1 in xenograft tumor tissues. A Expression of circNFATC3 in xenograft tumor tissues treated with lentivirus containing CCND1 or cholesterol modified si-circNFATC3. B Expression of CCND1 in xenograft tumor tissues treated with lentivirus containing CCND1 or cholesterol modified si-circNFATC3. The P-values were calculated using Student’s t test. ns, not significant, *P < 0.05, ***P < 0.001. Fig. S16. Representative images of IGF2BP3 expression evaluated by IHC in xenograft tumor tissues. Three different visual fields were randomly selected for each slice. The P-values were calculated using Mann-Whitney U test. ***P < 0.001.
- Published
- 2023
- Full Text
- View/download PDF
18. Supplementary document for Reducing the refractive index by replacing [AlPO₄]⁰ unit with [BPO₄]⁰ in fused silica - 6237082.pdf
- Author
-
guangbiao, xiang, jiangbin, zhang, zhongyang, xing, Huang, Liangjin, Pan, Zhiyong, zhang, hanwei, Wang, Xiaolin, and weihong, hua
- Abstract
Supplementary Materials
- Published
- 2023
- Full Text
- View/download PDF
19. Additional file 2 of The role of purity and frequency in the classification of perimenstrual headache
- Author
-
Na, Weinan, Liu, Hua, Liu, Yang, Wang, Xiaolin, and Yu, Shengyuan
- Abstract
Additional file 2: Table S2. Comparison between impure and pure perimenstrual headache (variables with no statistical difference).
- Published
- 2023
- Full Text
- View/download PDF
20. Superconducting Diode Effect -- Fundamental Concepts, Material Aspects, and Device Prospects
- Author
-
Nadeem, Muhammad, Fuhrer, Michael S., and Wang, Xiaolin
- Subjects
Superconductivity (cond-mat.supr-con) ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed Matter - Superconductivity ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,FOS: Physical sciences - Abstract
Superconducting diode effect, in analogy to the nonreciprocal resistive charge transport in semiconducting diode, is a nonreciprocity of dissipationless supercurrent. Such an exotic phenomenon originates from intertwining between symmetry-constrained supercurrent transport and intrinsic quantum functionalities of helical/chiral superconductors. In this article, research progress of superconducting diode effect including fundamental concepts, material aspects, device prospects, and theoretical/experimental development is reviewed. First, fundamental mechanisms to cause superconducting diode effect including simultaneous space-inversion and time-reversal symmetry breaking, magnetochiral anisotropy, interplay between spin-orbit interaction energy and the characteristic energy scale of supercurrent carriers, and finite-momentum Cooper pairing are discussed. Second, the progress of superconducting diode effect from theoretical predictions to experimental observations are reviewed. Third, interplay between various system parameters leading to superconducting diode effect with optimal performance is presented. Then, it is explicitly highlighted that nonreciprocity of supercurrent can be characterized either by current-voltage relation obtained from resistive direct-current measurements in the metal-superconductor fluctuation region ($T\approx T_c$) or by current-phase relation and nonreciprocity of superfluid inductance obtained from alternating-current measurements in the superconducting phase ($T, Comment: 26 pages, 5 figures
- Published
- 2023
- Full Text
- View/download PDF
21. Additional file 3 of Should migraine without aura be further divided? A study of 1444 female patients with migraine without aura
- Author
-
Wang, Xiaolin, Na, Weinan, Yang, Ying, Zhang, Wenwen, Zhao, Junxia, Zhang, Tingting, Zhou, Yuanji, Liu, Hua, Zhao, Dong, and Yu, Shengyuan
- Abstract
Additional file 3.
- Published
- 2023
- Full Text
- View/download PDF
22. Antiferromagnetic topological insulating state in Tb$_{0.02}$Bi$_{1.08}$Sb$_{0.9}$Te$_2$S single crystals
- Author
-
Guo, Lei, Zhao, Weiyao, Li, Qile, Xu, Meng, Chen, Lei, Bake, Abdulhakim, Vu, Thi-Hai-Yen, He, Yahua, Fang, Yong, Cortie, David, Mo, Sung-Kwan, Edmonds, Mark, Wang, Xiaolin, Dong, Shuai, Karel, Julie, and Zheng, Ren-Kui
- Subjects
Condensed Matter - Materials Science ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences - Abstract
Topological insulators are emerging materials with insulating bulk and symmetry protected nontrivial surface states. One of the most fascinating transport behaviors in a topological insulator is the quantized anomalous Hall insulator, which has been observed inmagnetic-topological-insulator-based devices. In this work, we report a successful doping of rare earth element Tb into Bi$_{1.08}$Sb$_{0.9}$Te$_2$S topological insulator single crystals, in which the Tb moments are antiferromagnetically ordered below ~10 K. Benefiting from the in-bulk-gap Fermi level, transport behavior dominant by the topological surface states is observed below ~ 150 K. At low temperatures, strong Shubnikov-de Haas oscillations are observed, which exhibit 2D-like behavior. The topological insulator with long range magnetic ordering in rare earth doped Bi$_{1.08}$Sb$_{0.9}$Te$_2$S single crystal provides an ideal platform for quantum transport studies and potential applications., Comment: 15 pages, 3 figures
- Published
- 2023
- Full Text
- View/download PDF
23. Additional file 1 of The role of purity and frequency in the classification of perimenstrual headache
- Author
-
Na, Weinan, Liu, Hua, Liu, Yang, Wang, Xiaolin, and Yu, Shengyuan
- Abstract
Additional file 1: Table S1. Comparison between low-frequency and high-frequency perimenstrual headache (variables with no statistical difference).
- Published
- 2023
- Full Text
- View/download PDF
24. Additional file 1 of Should migraine without aura be further divided? A study of 1444 female patients with migraine without aura
- Author
-
Wang, Xiaolin, Na, Weinan, Yang, Ying, Zhang, Wenwen, Zhao, Junxia, Zhang, Tingting, Zhou, Yuanji, Liu, Hua, Zhao, Dong, and Yu, Shengyuan
- Abstract
Additional file 1.
- Published
- 2023
- Full Text
- View/download PDF
25. Supplementary document for Reducing the refractive index by replacing [AlPO4]0 unit with [BPO4]0 in fused silica - 6306770.pdf
- Author
-
guangbiao, xiang, jiangbin, zhang, zhongyang, xing, Huang, Liangjin, Pan, Zhiyong, zhang, hanwei, Wang, Xiaolin, and weihong, hua
- Abstract
Supplemental Document
- Published
- 2023
- Full Text
- View/download PDF
26. FHPM: Fine-grained Huge Page Management For Virtualization
- Author
-
Li, Chuandong, Sha, Sai, Zeng, Yangqing, Yang, Xiran, Luo, Yingwei, Wang, Xiaolin, and Wang, Zhenlin
- Subjects
FOS: Computer and information sciences ,Computer Science - Operating Systems ,Operating Systems (cs.OS) - Abstract
As more data-intensive tasks with large footprints are deployed in virtual machines (VMs), huge pages are widely used to eliminate the increasing address translation overhead. However, once the huge page mapping is established, all the base page regions in the huge page share a single extended page table (EPT) entry, so that the hypervisor loses awareness of accesses to base page regions. None of the state-of-the-art solutions can obtain access information at base page granularity for huge pages. We observe that this can lead to incorrect decisions by the hypervisor, such as incorrect data placement in a tiered memory system and unshared base page regions when sharing pages. This paper proposes FHPM, a fine-grained huge page management for virtualization without hardware and guest OS modification. FHPM can identify access information at base page granularity, and dynamically promote and demote pages. A key insight of FHPM is to redirect the EPT huge page directory entries (PDEs) to new companion pages so that the MMU can track access information within huge pages. Then, FHPM can promote and demote pages according to the current hot page pressure to balance address translation overhead and memory usage. At the same time, FHPM proposes a VM-friendly page splitting and collapsing mechanism to avoid extra VM-exits. In combination, FHPM minimizes the monitoring and management overhead and ensures that the hypervisor gets fine-grained VM memory accesses to make the proper decision. We apply FHPM to improve tiered memory management (FHPM-TMM) and to promote page sharing (FHPM-Share). FHPM-TMM achieves a performance improvement of up to 33% and 61% over the pure huge page and base page management. FHPM-Share can save 41% more memory than Ingens, a state-of-the-art page sharing solution, with comparable performance.
- Published
- 2023
- Full Text
- View/download PDF
27. Comparison of Clinical Efficacy of Neoadjuvant Chemoradiation Therapy Between Lower and Higher Radiation Doses for Carcinoma of the Esophagus and Gastroesophageal Junction: A Systematic Review
- Author
-
Xudong Yin, Zhe Qiao, Wang Xiaolin, Ying Li, Zhengrong Zhang, Yi-Xun Gu, Chao Sun, Jiandong Tong, Tianyu Huang, Hanshan Liu, Yong Chen, Xi-Zhi Zhang, Xin Yuan, Yongpeng Li, and Guangyu Lu
- Subjects
Cancer Research ,medicine.medical_specialty ,Radiation ,business.industry ,medicine.medical_treatment ,Standard treatment ,Subgroup analysis ,medicine.disease ,030218 nuclear medicine & medical imaging ,Radiation therapy ,03 medical and health sciences ,0302 clinical medicine ,medicine.anatomical_structure ,Therapeutic index ,Oncology ,030220 oncology & carcinogenesis ,Carcinoma ,medicine ,Adenocarcinoma ,Radiology, Nuclear Medicine and imaging ,Radiology ,Esophagus ,Adverse effect ,business - Abstract
Purpose Neoadjuvant concurrent chemoradiation therapy (nCRT) plus surgery has been a standard treatment for locoregionally advanced esophageal cancer and carcinoma of the gastroesophageal junction (EC/GEJ), but the optimal preoperative radiation dose is still unclear. We performed this systematic review to explore the treatment efficacy and toxicity of different radiation dose levels and find an optimal dose‐fractionation strategy in EC/GEJ patients receiving nCRT. Methods and Materials Embase and Ovid Medline were searched for articles involving cases of operable squamous and adenocarcinoma of the esophagus and GEJ in which patients received nCRT up to a dose of 50.4 Gy in 28 fractions that were published until July 2019, when the search was performed. Physical dose distributions were converted to biologically equivalent doses (BEDs), which were described in units of gray (alpha/beta). Pooled rates of overall survival (OS), progression-free survival (PFS), failure patterns, and toxicities were compared between lower-dose radiation therapy (LDRT; BED ≤48.85 Gy10) and higher-dose radiation therapy (HDRT; BED >48.85 Gy10) for patients treated with nCRT. Results A total of 110 studies with 7577 EC/GEJ patients receiving nCRT were included in this pooled analysis. Both the PFS and OS rates of patients receiving LDRT were significantly higher than those of patients receiving HDRT. Patients receiving LDRT had improved safety regarding treatment-related adverse events and lower distant failure rates than patients receiving HDRT. Utilization of modern radiation therapy (RT) techniques, including 3-dimensional conformal RT and intensity modulated RT, was associated with improved oncologic outcomes compared with 2-dimensional methods. Subgroup analysis showed that EC/GEJ patients receiving conventionally fractionated radiation to a dose of 40.0 to 41.4 Gy in 20-23 fractions showed improved OS compared with those receiving radiation above this dose. Conclusions Based on the limited data, nCRT using BED ≤48.85 Gy10 was suitable for locoregionally advanced, resectable EC/GEJ. A total dose of 40.0 to 41.4 Gy in 20 to 23 fractions using modern RT techniques might provide the optimal therapeutic ratio.
- Published
- 2021
28. High energy flash X‐ray image restoration using region extrema and kernel optimization
- Author
-
Wang Xiaolin, Jinxin Xu, and Qingwu Li
- Subjects
Physics ,High energy ,business.industry ,Kernel optimization ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Maxima and minima ,Flash (photography) ,QA76.75-76.765 ,Optics ,Computer Science::Computer Vision and Pattern Recognition ,Signal Processing ,X ray image ,Photography ,Computer Vision and Pattern Recognition ,Computer software ,Electrical and Electronic Engineering ,business ,TR1-1050 ,Software - Abstract
The quality of high energy flash X‐ray images is crucial to the high‐precision diagnosis of object density. High energy flash X‐ray radiography is susceptible to the system blur, which usually causes the poor quality of static images. In response to this, a novel restoration algorithm using region extrema and kernel optimization (REKO) is presented. Based on the observation that the region extrema distribution of blurred high energy flash X‐ray images deviates from opposite ends of image grey domain, the sparseness‐inducing prior for regularizing image region extrema is applied to construct the restoration model. Considering the sparse characteristics of blur kernels, the sparseness‐inducing regularization is incorporated to constrain blur kernels in the restoration model. The non‐convex and non‐linear objective function is gradually minimized through energy alternating minimization and dually linear approximation. Furthermore, a continuity enforced kernel optimization algorithm is proposed to estimate more accurate blur kernels. The discontinuous kernel elements are suppressed by extracting the main structure of blur kernels and constructing kernel continuity function in cross windows. Experimental results demonstrate that our algorithm can more accurately estimate blur kernels and achieve restoration results with sharper edges on high energy flash X‐ray images.
- Published
- 2021
29. HMM-V: Heterogeneous Memory Management for Virtualization
- Author
-
sha, Sai, Li, Chuandong, Luo, Yingwei, Wang, Xiaolin, and Wang, Zhenlin
- Subjects
FOS: Computer and information sciences ,Computer Science - Operating Systems ,Operating Systems (cs.OS) - Abstract
The memory demand of virtual machines (VMs) is increasing, while DRAM has limited capacity and high power consumption. Non-volatile memory (NVM) is an alternative to DRAM, but it has high latency and low bandwidth. We observe that the VM with heterogeneous memory may incur up to a $1.5\times$ slowdown compared to a DRAM VM, if not managed well. However, none of the state-of-the-art heterogeneous memory management designs are customized for virtualization on a real system. In this paper, we propose HMM-V, a Heterogeneous Memory Management system for Virtualization. HMM-V automatically determines page hotness and migrates pages between DRAM and NVM to achieve performance close to the DRAM system. First, HMM-V tracks memory accesses through page table manipulation, but reduces the cost by leveraging Intel page-modification logging (PML) and a multi-level queue. Second, HMM-V quantifies the ``temperature'' of page and determines the hot set with bucket-sorting. HMM-V then efficiently migrates pages with minimal access pause and handles dirty pages with the assistance of PML. Finally, HMM-V provides pooling management to balance precious DRAM across multiple VMs to maximize utilization and overall performance. HMM-V is implemented on a real system with Intel Optane DC persistent memory. The four-VM co-running results show that HMM-V outperforms NUMA balancing and hardware management (Intel Optane memory mode) by $51\%$ and $31\%$, respectively.
- Published
- 2022
30. A Foldable Implementation of Ka-Band Active Phased Array for LEO small Satellite Communication
- Author
-
Wang, Xiaolin, YOU, Dongwon, You, Dongwon, Shirane, Atsushi, and Okada, Kenichi
- Published
- 2022
31. A Ka-Band Dual Circularly Polarized CMOS Transmitter with Adaptive Scan Impedance Tuner and Active XPD Calibration Technique for Satellite Termina
- Author
-
YOU, Dongwon, You, Dongwon, Wang, Yun, Fu, Xi, HERDIAN, HANS, Herdian, Hans, Wang, Xiaolin, Fadila, Ashbir Aviat, Lee, Hojun, Ide, Michihiro, Li, Zheng, Pang, Jian, Jian, Pang, Shirane, Atsushi, and Okada, Kenichi
- Published
- 2022
32. A Flexible Implementation of Ka-band Active Phased Array for Satellite Communication
- Author
-
Wang, Xiaolin, YOU, Dongwon, You, Dongwon, Fu, Xi, Lee, Hojun, Li, Zheng, Pang, Jian, Jian, Pang, Shirane, Atsushi, Sakamoto, Hiraku, and Okada, Kenichi
- Published
- 2022
33. Uncertainty Quantification Enforced Flash Radiography Reconstruction by Two-Level Efficient MCMC
- Author
-
Xu Jinxin, Qingwu Li, Wang Xiaolin, Yuefeng Jing, and Jiayu Wang
- Subjects
Computer science ,Posterior probability ,Reconstruction algorithm ,Markov chain Monte Carlo ,Iterative reconstruction ,Computer Graphics and Computer-Aided Design ,symbols.namesake ,Conjugate gradient method ,Stochastic simulation ,symbols ,Uncertainty quantification ,Algorithm ,Software ,Gibbs sampling - Abstract
Flash Radiography inspections stand to gain from inversion to infer density distribution of object based on X-ray transmission image. It is indispensable to be able to reliably provide uncertainties associated with the inversions. Although many inversion algorithms have been devised, they often perform poorly due to either their sensitivity to regularization parameter chosen in variational optimization or prohibitive computation and noisy results in stochastic simulation. In this paper, we present a gradual reconstruction algorithm, called TLE-Gibbs (two-level efficient Gibbs sampling), for flash radiography. At its core, TLE-Gibbs is a stochastic approach based on efficient Gibbs sampling and reconstruction refinement. A two-level scheme is proposed that enables high-resolution image to be constrained with uncertainty estimation from high-level reconstruction. Furthermore, a splitting variant that increases flexibility and precision is considered in the two-level scheme. An efficient Markov chain Monte Carlo (MCMC) endowed with first-order truncated conjugate gradient (CG) optimizer is developed to achieve minimal cost per sample and to approximate the posterior distribution. Finally, we adopt an effective refinement method to remove noises remained in the sample meanwhile maintaining sharp edges. For performance evaluation, TLE-Gibbs is applied on both synthetic data in which the influence of system blur is specially investigated and real data, and comparison with state-of-the-art reconstruction methods demonstrates the superiority of the proposed method.
- Published
- 2021
34. A rapid coarse-grained blind wideband spectrum sensing method for cognitive radio networks
- Author
-
Jun Huang, Liu Chang, Wang Xiaolin, Yuebin Bai, Peng Feng, and Yuhao Gu
- Subjects
Cognitive radio ,Sampling (signal processing) ,Computer Networks and Communications ,Computer science ,0202 electrical engineering, electronic engineering, information engineering ,Electronic engineering ,Spectral density ,020206 networking & telecommunications ,020201 artificial intelligence & image processing ,02 engineering and technology ,Wideband ,Spectrum sharing ,Spectrum management - Abstract
Spectrum sensing aims to sense the potential spectrum resources available in the cognitive radio environment. It is also the premise of spectrum management and spectrum sharing in cognitive radio systems. To perceive the primary user’s activity and make full use of spectrum holes, rapid detection of a broad frequency span is an essential part of cognitive radio technology. Reducing the observation time for the data collection, the data storage requirements, and hardware/software computational complexity are urgent and challenging issues in wideband spectrum sensing. High accuracy power spectral density estimation is not the primary requirement; of course, the accuracy must be controlled within the appropriate range and can support the primary user activity’s determination. This paper proposes a sub-Nyquist wideband spectrum sensing method based on compressive covariance sensing for the rapid wideband spectrum sensing. Compared with the traditional Nyquist-rate method, this method can use low-speed ADC to detect wideband signals and effectively control the observation time and computational complexity. This paper’s main contributions include: (1) developing a sub-Nyquist sampling structure based on the multi-coset sampling banks, (2) proposing a coarse-grained power spectral density estimation method for wideband spectrum sensing with short observation time and low complexity. Simulations show that the proposed method exhibits this method is suitable for fast spectral detection. At the same time, the error of spectrum analysis is basically within the acceptable range.
- Published
- 2021
35. Topological Dirac Spin-Gapless Materials -- New Horizon for Topological Spintronics Without Spin-Orbit Interaction
- Author
-
Nadeem, Muhammad and Wang, Xiaolin
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,FOS: Physical sciences ,Condensed Matter::Strongly Correlated Electrons - Abstract
The existence of chiral edge states, corresponding to the nontrivial bulk-band topology characterized by a non-vanishing topological invariant, and the manipulation of topological transport via chiral edge states promise topological electronic/spintronic device applications. Here we predict the existence, practical realization, topological protection, and topological switching of spin-gapless valley-filtered chiral edge states, representing a novel topological Dirac spin-gapless/half-metal phase in antiferromagnetic honeycomb structures terminated on zigzag edges. We demonstrate that this phenomenon is realizable if a perpendicular (transverse) electric field is applied in zigzag nanoribbons with an antiferromagnetic ordering on the boundary (in the bulk), and the Weber-Fechner type nonlinear behavior is optimizable by a transverse (perpendicular) electric field. The existence of spin-gapless valley-filtered chiral edge states, their correspondence with nontrivial topological character in the bulk, and electric-field-driven switching of their spin-polarization that is accompanied by switching of bulk-band topology promise a new strategy for topological spintronics without spin-orbit interaction., 9 pages, 5 figures
- Published
- 2022
36. A 3.4mW/element Radiation-Hardened Ka-Band CMOS Phased-Array Receiver Utilizing Magnetic-Tuning Phase Shifter for Small Satellite Constellation
- Author
-
Fu, Xi, Wang, Yun, YOU, Dongwon, You, Dongwon, Wang, Xiaolin, Fadila, Ashbir Aviat, ZHANG, Yi, Zhang, Yi, Kato, Sena, WANG, Chun, Wang, Chun, Li, Zheng, Pang, Jian, Jian, Pang, Shirane, Atsushi, and Okada, Kenichi
- Published
- 2022
37. Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial
- Author
-
Casazza, Joseph P., Cale, Evan M., Narpala, Sandeep, Yamshchikov, Galina V., Coates, Emily E., Hendel, Cynthia S., Novik, Laura, Holman, LaSonji A., Widge, Alicia T., Apte, Preeti, Gordon, Ingelise, Gaudinski, Martin R., Conan-Cibotti, Michelle, Lin, Bob C., Nason, Martha C., Trofymenko, Olga, Telscher, Shinyi, Plummer, Sarah H., Wycuff, Diane, Adams, William C., Pandey, Janardan P., McDermott, Adrian, Roederer, Mario, Sukienik, Avery N., O'Dell, Sijy, Gall, Jason G., Flach, Britta, Terry, Travis L., Choe, Misook, Shi, Wei, Chen, Xuejun, Kaltovich, Florence, Saunders, Kevin O., Stein, Judy A., Doria-Rose, Nicole A., Schwartz, Richard M., Balazs, Alejandro B., Baltimore, David, Nabel, Gary J., Koup, Richard A., Graham, Barney S., Ledgerwood, Julie E., Mascola, John R., Andrews, Charla, Arthur, Anita, Awan, Seemal F., Beck, Allison, Burch, Eugeania, Burgos Florez, Maria C., Berkowitz, Nina M., Boritz, Eli A., Carlton, Kevin, Cartagena, Cora T., Carter, Christina, Chen, Grace L., Costner, Pamela, Cunningham, Jennifer, Douek, Daniel C., Eshun, Aba M., Evans, Catina, Hicks, Renunda, Houser, Katherine V., Jones, Justine, Larkin, Brenda, Le, Lam, Mendoza, Floreliz, Migueles, Stephen, Misasi, John, Nguyen, Thuy A., Ola, Abidemi, Parker, Karen, Pittman, Iris, Requilman, La’ Shawn, Rothwell, Ro Shauna, Schieber, Gretchen L., Saunders, Jamie, Sitar, Sandra, Tran, Colin, Vasilenko, Olga, Waheed, Sana, Wang, Lingshu, Wang, Xiaolin, Whalen, William, Williams, Pernell, Wu, Richard L., and Zephir, Kathy
- Subjects
Adult ,HIV-1 ,Humans ,HIV Infections ,General Medicine ,Dependovirus ,HIV Antibodies ,Antibodies, Neutralizing ,General Biochemistry, Genetics and Molecular Biology ,Article ,Broadly Neutralizing Antibodies - Abstract
Adeno-associated viral vector-mediated transfer of DNA coding for broadly neutralizing anti-HIV antibodies (bnAbs) offers an alternative to attempting to induce protection by vaccination or by repeated infusions of bnAbs. In this study, we administered a recombinant bicistronic adeno-associated virus (AAV8) vector coding for both the light and heavy chains of the potent broadly neutralizing HIV-1 antibody VRC07 (AAV8-VRC07) to eight adults living with HIV. All participants remained on effective anti-retroviral therapy (viral load (VL) 1 μg ml(−1) in three individuals. In four individuals, VRC07 serum concentrations remained stable near maximal concentration for up to 3 years of follow-up. In exploratory analyses, neutralizing activity of in vivo produced VRC07 was similar to that of in vitro produced VRC07. Three of eight participants showed a non-idiotypic anti-drug antibody (ADA) response directed against the Fab portion of VRC07. This ADA response appeared to decrease the production of serum VRC07 in two of these three participants. These data represent a proof of concept that adeno-associated viral vectors can durably produce biologically active, difficult-to-induce bnAbs in vivo, which could add valuable new tools to the fight against infectious diseases.
- Published
- 2022
38. Study of charmonium photoproduction in ultra-peripheral lead-lead collisions at LHCb
- Author
-
Wang, Xiaolin
- Subjects
High Energy Physics::Phenomenology ,Nuclear Theory ,High Energy Physics::Experiment ,Nuclear Experiment - Abstract
The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range 2 < 𝜂 < 5, designed for the study of particles containing bottom or charm quark. The study of exclusive vector meson photoproduction in ultra-peripheral lead-lead collisions is essential to understand physics at low Bjorken x. In particular, coherent charmonium mesons are promising probes of nuclear shadowing due to their sensitivity to the nuclear parton distribution function of gluons. In this presentation, we report the measurements of the differential coherent cross section productions as a function of rapidity for J/ψ meson in ultra-peripheral PbPb collisions at a nucleon-nucleon centre-of-mass energy of 5.02TeV. The J/ψ mesons are reconstructed in the dimuon decay channel using a data sample collected by the LHCb experiment in 2015, corresponding to an integrated luminosity about 10𝜇𝑏^(−1). The comparisons with theoretical predictions are also presented. More precise result from 2018 would come soon !
- Published
- 2022
39. Actinobacteria Community and Their Antibacterial and Cytotoxic Activity on the Weizhou and Xieyang Volcanic Islands in the Beibu Gulf of China
- Author
-
Wang, Lin, Peng, Chunyan, Gong, Bin, Yang, Zicong, Song, Jingjing, Li, Lu, Xu, Lili, Yue, Tao, Wang, Xiaolin, Yang, Mengping, Xu, Huimin, and Liu, Xiong
- Subjects
Microbiology (medical) ,Microbiology - Abstract
Weizhou Island and Xieyang Island are two large and young volcanic sea islands in the northern part of the South China Sea. In this study, high-throughput sequencing (HTS) of 16S rRNA genes was used to explore the diversity of Actinobacteria in the Weizhou and Xieyang Islands. Moreover, a traditional culture-dependent method was utilized to isolate Actinobacteria, and their antibacterial and cytotoxic activities were detected. The alpha diversity indices (ACE metric) of the overall bacterial communities for the larger island (Weizhou) were higher than those for the smaller island (Xieyang). A beta diversity analysis showed a more dispersive pattern of overall bacterial and actinobacterial communities on a larger island (Weizhou). At the order level, Frankiales, Propionibacteriales, Streptomycetales, Micrococcales, Pseudonocardiales, Micromonosporales, Glycomycetales, Corynebacteriales, and Streptosporangiales were the predominant Actinobacteria. A total of 22.7% of the OTUs shared 88%–95% similarity with some known groups. More interestingly, 15 OTUs formed a distinct and most predominant clade, and shared identities of less than 95% with any known families. This is the first report about this unknown group and their 16S rRNA sequences obtained from volcanic soils. A total of 268 actinobacterial strains were isolated by the culture-dependent method. Among them, 55 Streptomyces species were isolated, representing that 76.6% of the total. S. variabilis and S. flavogriseus were the most abundant. Moreover, some rare Actinobacteria were isolated. These included Micromonospora spp., Nocardia spp., Amycolatopsis spp., Tsukamurella spp., Mycobacterium spp., and Nonomuraea spp. Among them, eight Streptomyces spp. exhibited antibacterial activity against Bacillus cereus. Only three strains inhibited the growth of Escherichia coli. Four strains showed good activity against aquatic pathogenic bacterial strains of Streptococcus iniae. The cytotoxicity assay results showed that 27 strains (10.07%) exhibited cytotoxic activity against HeLa and A549 cell lines. Many actinobacterial strains with cytotoxic activity were identified as rare Actinobacteria, which illustrated that volcanic islands are vast reservoirs for Actinobacteria with promising antibacterial and cytotoxic activity. This study may significantly improve our understanding of actinobacterial communities on volcanic islands. The isolated Actinobacteria showed promising prospects for future use.
- Published
- 2022
40. The microRNA miR-3174 Suppresses the Expression of ADAM15 and Inhibits the Proliferation of Patient-Derived Bladder Cancer Cells
- Author
-
Yu, Chunhu, Wang, Ying, Liu, Tiejun, Sha, Kefu, Song, Zhaoxia, Zhao, Mingjun, and Wang, Xiaolin
- Subjects
microRNA ,proliferation ,ADAM ,bladder cancer ,metastasis ,OncoTargets and Therapy ,Original Research - Abstract
Chunhu Yu,1 Ying Wang,1 Tiejun Liu,1 Kefu Sha,1 Zhaoxia Song,1 Mingjun Zhao,1 Xiaolin Wang2 1Department of Urinary Surgery, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, People’s Republic of China; 2The Third District of Airforce Special Service Sanatorium, Chinese People’s Liberation Army Air Force, Hangzhou 310021, Zhejiang Province, People’s Republic of ChinaCorrespondence: Xiaolin Wang Email xiaolin_wang2019@sina.comBackground: Bladder cancer is a major urinary system cancer, and its mechanism of action regarding its progression is unclear. The goal of this study was to examine the expression of ADAM panel in the clinical specimens of bladder cancer and to investigate the role of miR-3174/ADAM15 (a disintegrin and metalloprotease 15) axis in the regulation of bladder cancer cell proliferation.Methods: The expression of an ADAM gene panel (including ADAM8, 9, 10, 11, 12, 15, 17, 19, 22, 23, 28, and 33), including 30 pairs of bladder tumor and non-tumor specimens, was examined by Ion AmpliSeq Targeted Sequencing. A microRNA (miRNA) that could potentially target the ADAM with the highest expression level in the tumor tissue was identified using the online tool miRDB. Next, the interaction between the miRNA and ADAM15 was identified by Western blot. Finally, the proliferation of bladder cancer cells was examined using MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) experiments (cell proliferation examining) and subcutaneous tumor models by using nude mice.Results: The expression of ADAM15 in tumor tissue was found statistically significant when compared to its expression in non-tumor tissue. Additionally, ADAM15’s expression in tumor tissue was found the highest of all other tested ADAMs. Next, by using the online tool miRDB, a microRNA termed miR-3174 was identified that targets ADAM15 and inhibits its expression by binding to its 3′-untranslated region. Finally, we found that overexpression of miR-3174 in bladder cancer cells inhibited the proliferation of cells due to the inhibition of ADAM15.Conclusion: In the present work, the data highlight that miR-3174 inhibits the proliferation of bladder cancer cells by targeting ADAM15.Keywords: ADAM, bladder cancer, metastasis, microRNA, proliferation
- Published
- 2020
41. Spout Fluidized Bed Assisted Preparation of Poly(tannic acid)-Coated Urea Fertilizer
- Author
-
Li Rui, Wang Xiaolin, Zhiyuan Ma, Rongjie Wang, Yu Wang, Qian Li, Heling Guo, Xie Li, and Xin Jia
- Subjects
Prill ,General Chemical Engineering ,chemistry.chemical_element ,General Chemistry ,engineering.material ,Nitrogen ,Article ,Chemistry ,chemistry.chemical_compound ,chemistry ,Coating ,Fluidized bed ,Coated urea ,Tannic acid ,engineering ,Urea ,Fertilizer ,QD1-999 ,Nuclear chemistry - Abstract
Slow-release fertilizers (SRFs) have been widely used to reduce environment pollution derived from excessive nutrients. Coated fertilizers have been designed and prepared using various materials. However, development of new green coating materials and simple process is still a huge challenge. In this study, tannic acid (TA), a natural polyphenol, was used to prepare poly(tannic acid) (PTA)-coated fertilizers with urea prills as the core, and the technology of the coating process in a spout fluidized bed was developed. PTA coating could be formed rapidly by the fast oxidation of TA by an oxidation solution containing CuSO4 and H2O2. The coated urea release behavior was systematically studied in water and soil. In both water and soil, the release rate of nitrogen from coated urea is much slower than that from raw urea. Raw urea was completely dissolved within 30 min, while 27% of urea was released from coated urea. The pot experiments indicated that coated urea has a positive effect on the plant growth as well. Our results provide an effective method to prepare environment-friendly SRFs, indicating a promising application in sustainable agriculture.
- Published
- 2020
42. Nomograms for Prediction of Molecular Phenotypes in Colorectal Cancer
- Author
-
Yu, Zhuojun, Yu, Huichuan, Zou, Qi, Huang, Zenghong, Wang, Xiaolin, Tang, Guannan, Bai, Liangliang, Zhou, Chuanhai, Zhuang, Zhuokai, Xie, Yumo, Wang, Heng, Xu, Gaopo, Chen, Zijian, Fu, Xinhui, Huang, Meijin, and Luo, Yanxin
- Subjects
nomogram ,prediction of molecular subtypes ,KRAS ,colorectal cancer ,microsatellite instability ,CpG island methylator phenotype ,neoplasms ,OncoTargets and Therapy ,digestive system diseases ,Original Research ,BRAF - Abstract
Zhuojun Yu, 1–3,* Huichuan Yu, 1,* Qi Zou, 1, 4 Zenghong Huang, 1, 2 Xiaolin Wang, 1 Guannan Tang, 1 Liangliang Bai, 1 Chuanhai Zhou, 1–3 Zhuokai Zhuang, 1, 2 Yumo Xie, 1, 2 Heng Wang, 1 Gaopo Xu, 1 Zijian Chen, 1, 5 Xinhui Fu, 1, 6 Meijin Huang, 1, 2 Yanxin Luo 2 1Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, People’s Republic of China; 2Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, People’s Republic of China; 3Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510655, People’s Republic of China; 4Department of Colorectal and Anal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, People’s Republic of China; 5Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, People’s Republic of China; 6Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China*These authors contributed equally to this workCorrespondence: Huichuan YuGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, Guangdong 510655, People’s Republic of ChinaTel +86-18302044819Email yuhch5@mail.sysu.edu.cnYanxin LuoDepartment of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, Guangdong 510655, People’s Republic of ChinaTel +86-13826190263Email luoyx25@mail.sysu.edu.cnBackground: Colorectal cancer (CRC) patients with different molecular phenotypes, including microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and somatic mutations in BRAF and KRAS gene, vary in treatment response and prognosis. However, molecular phenotyping under adequate quality control in a community-based setting may be difficult. We aimed to build the nomograms based on easily accessible clinicopathological characteristics to predict molecular phenotypes.Methods: Three hundred and six patients with pathologically confirmed stage I-IV CRC were included in the cohort. The assays for MSI, CIMP, and mutations in BRAF and KRAS gene were performed using resected tumor samples. The candidate predictors were identified from clinicopathological variables using multivariate Logistic regression analyses to construct the nomograms that could predict each molecular phenotype.Results: The incidences of MSI, CIMP, BRAF mutation and KRAS mutation were 25.3% (72/285), 2.5% (7/270), 3.4% (10/293), and 34.8% (96/276) respectively. In the multivariate Logistic analysis, poor differentiation and high neutrophil/lymphocyte ratio (NLR) were independently associated with MSI; poor differentiation, high NLR and high carcinoembryonic antigen/tumor size ratio (CSR) were independently associated with CIMP; poor differentiation, lymphovascular invasion and high CSR were independently associated with BRAF mutation; poor differentiation, proximal tumor, mucinous tumor and high NLR were independently associated with KRAS mutation. Four nomograms for MSI, CIMP, BRAF mutation and KRAS mutation were developed based on these independent predictors, the C-indexes of which were 61.22% (95% CI: 60.28– 62.16%), 95.57% (95% CI: 95.20– 95.94%), 83.56% (95% CI: 81.54– 85.58%), and 69.12% (95% CI: 68.30– 69.94%) respectively.Conclusion: We established four nomograms using easily accessible variables that could well predict the presence of MSI, CIMP, BRAF mutation and KRAS mutation in CRC patients.Keywords: colorectal cancer, microsatellite instability, CpG island methylator phenotype, BRAF, KRAS, nomogram, prediction of molecular subtypes  
- Published
- 2020
43. Proposal for a Negative Capacitance Topological Quantum Field-Effect Transistor
- Author
-
Fuhrer, Michael S., Edmonds, Mark T., Culcer, Dimitrie, Nadeem, Muhammad, Wang, Xiaolin, Medhekar, Nikhil, Yin, Yuefeng, and Cole, Jared H
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,FOS: Physical sciences - Abstract
A topological quantum field effect transistor (TQFET) uses electric field to switch a material from topological insulator ("on", with conducting edge states) to a conventional insulator ("off"), and can have low subthreshold swing due to strong Rashba spin-orbit interaction. Numerous materials have been proposed, and electric field switching has been demonstrated in ultrathin Na${_3}$Bi. Here we propose a negative capacitance (NC) TQFET which uses a ferroelectric to amplify the electric field and potentially achieve very low switching voltages and energies. Materials challenges for realizing the NC-TQFET are discussed., Comment: Accepted version of paper number 38-2 presented at the 67th Annual IEEE International Electron Devices Meeting (IEDM) on 15 December 2021
- Published
- 2022
- Full Text
- View/download PDF
44. sj-docx-1-pie-10.1177_09544089221116418 - Supplemental material for A design optimization study of an air-cooling battery thermal management system for electric vehicles
- Author
-
Zhao, Gang, Wang, Xiaolin, Negnevitsky, Michael, and Zhang, Hengyun
- Subjects
FOS: Materials engineering ,FOS: Other engineering and technologies ,91299 Materials Engineering not elsewhere classified ,99999 Engineering not elsewhere classified - Abstract
Supplemental material, sj-docx-1-pie-10.1177_09544089221116418 for A design optimization study of an air-cooling battery thermal management system for electric vehicles by Gang Zhao, Xiaolin Wang, Michael Negnevitsky and Hengyun Zhang in Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
- Published
- 2022
- Full Text
- View/download PDF
45. Gate-tunable exchange bias effect in FePS3-Fe5GeTe2 van der Waals heterostructures
- Author
-
Albarakati, Sultan, Xie, Wen-Qiang, Tan, Cheng, Zheng, Guolin, Algarni, Meri, Li, Junbo, Partridge, James, Spencer, Michelle J. S., Farrar, Lawrence, Xiong, Yimin, Tian, Mingliang, Wang, Xiaolin, Zhao, Yu-Jun, and Wang, Lan
- Subjects
Condensed Matter - Materials Science ,Condensed Matter::Materials Science ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect - Abstract
Electrical gate-manipulated exchange bias (EB) effect is a long-term goal for spintronics applications. Meanwhile, the emergence of van der Waals (vdW) magnetic heterostructures provides ideal platforms for the study of interlayer magnetic coupling. However, to date, the electrical gate-controlled EB effect has yet to be realized in vdW heterostructures. Here, for the first time, we realized electrically-controllable EB effects in a vdW antiferromagnetic (AFM)-ferromagnetic (FM) heterostructure, FePS3-Fe5GeTe2. For pristine FePS3-Fe5GeTe2 heterostructures, sizable EB effects can be generated due to the strong interface coupling, which also depend on the thickness of the ferromagnetic layers. By applying a solid protonic gate, the EB effects can be electrically tuned largely by proton intercalations and deintercalations. The EB field reaches up to 23% of the coercive field and the blocking temperature exceeds 50 K at Vg= -3.15 V. The proton intercalations not only tune the average magnetic exchange coupling, but also change the AFM configurations and transform the heterointerface between an uncompensated AFM-FM interface and a compensated AFM-FM interface. These alterations result in a dramatic modulation of the total interface exchange coupling and the resultant EB effects. The study is a significant step towards vdW heterostructure-based magnetic logic for future low-energy electronics., Comment: 19 pages, 5 figures
- Published
- 2022
- Full Text
- View/download PDF
46. Additional file 4 of CircVAPA promotes small cell lung cancer progression by modulating the miR-377-3p and miR-494-3p/IGF1R/AKT axis
- Author
-
Hua, Jinghan, Wang, Xiaolin, Ma, Liying, Li, Jingxin, Cao, Guozhen, Zhang, Shaobo, and Lin, Wenchu
- Abstract
Additional file 4: Table S3. The expression of circVAPA in serum samples.
- Published
- 2022
- Full Text
- View/download PDF
47. Additional file 1 of Gradually shifting clinical phenomics in migraine spectrum: a cross-sectional, multicenter study of 5438 patients
- Author
-
Ran, Ye, Yin, Ziming, Lian, Yajun, Xu, Yanmei, Li, Yajie, Liu, Jiale, Gu, Qun, Yan, Fanhong, Ge, Zhaoli, Lian, Yu, Hu, Dongmei, Chen, Sufen, Wang, Yangyang, Wang, Xiaolin, Wang, Rongfei, Chen, Xiaoyan, Liu, Jing, Zhang, Mingjie, Han, Xun, Xie, Wei, Yu, Zhe, Cao, Ya, Li, Yingji, Li, Ke, Dong, Zhao, and Yu, Shengyuan
- Abstract
Additional file 1: Table 1. Prevalence of triggers of headache in MWoA and MWA. Table 2. Prevalence of mitigating factors of headache in MWoA and MWA. Table 3. Prevalence of premonitory symptoms of headache in MWoA and MWA. Table 4. Comparison between AWNM and AWM. Table 5. Comparison between MWoA and AWNM. Table 6. Multivariate analysis of clinical characteristics for distinction of MwoA and MwA. Table 7. Multivariate analysis of clinical characteristics for distinction of AWM and AWNM. Table 8. Fit statistics for the selected tree.
- Published
- 2022
- Full Text
- View/download PDF
48. sj-docx-1-pie-10.1177_09544089221116418 - Supplemental material for A design optimization study of an air-cooling battery thermal management system for electric vehicles
- Author
-
Zhao, Gang, Wang, Xiaolin, Negnevitsky, Michael, and Zhang, Hengyun
- Subjects
FOS: Materials engineering ,FOS: Other engineering and technologies ,91299 Materials Engineering not elsewhere classified ,99999 Engineering not elsewhere classified - Abstract
Supplemental material, sj-docx-1-pie-10.1177_09544089221116418 for A design optimization study of an air-cooling battery thermal management system for electric vehicles by Gang Zhao, Xiaolin Wang, Michael Negnevitsky and Hengyun Zhang in Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
- Published
- 2022
- Full Text
- View/download PDF
49. Deep Learning Workload Scheduling in GPU Datacenters: Taxonomy, Challenges and Vision
- Author
-
Gao, Wei, Hu, Qinghao, Ye, Zhisheng, Sun, Peng, Wang, Xiaolin, Luo, Yingwei, Zhang, Tianwei, and Wen, Yonggang
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,Artificial Intelligence (cs.AI) ,Computer Science - Distributed, Parallel, and Cluster Computing ,Computer Science - Artificial Intelligence ,Distributed, Parallel, and Cluster Computing (cs.DC) ,Machine Learning (cs.LG) - Abstract
Deep learning (DL) shows its prosperity in a wide variety of fields. The development of a DL model is a time-consuming and resource-intensive procedure. Hence, dedicated GPU accelerators have been collectively constructed into a GPU datacenter. An efficient scheduler design for such GPU datacenter is crucially important to reduce the operational cost and improve resource utilization. However, traditional approaches designed for big data or high performance computing workloads can not support DL workloads to fully utilize the GPU resources. Recently, substantial schedulers are proposed to tailor for DL workloads in GPU datacenters. This paper surveys existing research efforts for both training and inference workloads. We primarily present how existing schedulers facilitate the respective workloads from the scheduling objectives and resource consumption features. Finally, we prospect several promising future research directions. More detailed summary with the surveyed paper and code links can be found at our project website: https://github.com/S-Lab-System-Group/Awesome-DL-Scheduling-Papers, Comment: Submitted to ACM Computing Surveys
- Published
- 2022
- Full Text
- View/download PDF
50. Additional file 2 of CircARID1A binds to IGF2BP3 in gastric cancer and promotes cancer proliferation by forming a circARID1A-IGF2BP3-SLC7A5 RNA–protein ternary complex
- Author
-
Ma, Qiang, Yang, Feifei, Huang, Bo, Pan, Xiaojuan, Li, Wei, Yu, Ting, Wang, Xiaolin, Ran, Lingyu, Qian, Kun, Li, Hui, Li, Haiping, Liu, Yuying, Liang, Ce, Ren, Junwu, Zhang, Yuying, Wang, Shimin, and Xiao, Bin
- Abstract
Additional file 2: Fig. S1 IGF2BP3 expression in GC tissues or cell lines. A Heat map of RBPs dysregulated in STAD of TCGA database. B Representative IHC images of IGF2BP3 expression in normal gastric mucosa or GC tissues from HPA database. C The expression of IGF2BP3 in normal gastric epithelia cell GES-1 and gastric cancer cell lines SGC7901, BGC823, AGS, and MKN74. Fig. S2 The interference efficiency and inhibiting proliferation effect of two designed IGF2BP3 siRNAs. A The interference efficiency of si-IGF2BP3-1 and si-IGF2BP3-2 in SGC7901 and BGC823 cells. B The viability of SGC7901 and BGC823 cells transfected with si-IGF2BP3-1 and si-IGF2BP3-2. C The proliferation of SGC7901 and BGC823 cells transfected with si-IGF2BP3-1 and si-IGF2BP3-2. The P-values were calculated using the two-tailed Student’s t test. *P < 0.05. Fig. S3 The expression of IGF2BP3 in SGC7901 and BGC823 cells after IGF2BP3 knockdown or overexpression. A The expression of IGF2BP3 in SGC7901 and BGC823 cells after IGF2BP3 knockdown by siRNA. B The expression of IGF2BP3 in SGC7901 and BGC823 cells with IGF2BP3 stable overexpression. Fig. S4 Screening of circRNAs that binding to IGF2BP3 protein in GC. A Heat map of circRNAs binding to IGF2BP3 in SGC7901 cells evaluated by RIP-seq. B The expression of circELK4 in GC tissues (GC) and adjacent tissues (NC). The P-value was calculated using the two-tailed Student’s t test. Fig. S5 CircARID1A sequencing results of GC tissues and the adjacent tissues. A CircARID1A sequencing results of GC tissue and the adjacent tissue from patient 1. B CircARID1A sequencing results of GC tissue and the adjacent tissue from patient 2. Fig. S6 Validation of the binding between circARID1A and IGF2BP3 proteins in BGC823 cells. A RIP analysis of circARID1A enrichment pull-downs by GFP in BGC823 cells overexpressing EGFP-tagged IGF2BP3. B-C RIP analyses of circARID1A enrichment pull-downs by IGF2BP3 in BGC823 cells following (B) IGF2BP3 or (C) circARID1A knockdowns. D Enrichment efficiency of biotin tagged circARID1A probes assessed by RNA pull-downs. E Western blot validation of interaction of circARID1A and IGF2BP3 by RNA pull-down in BGC823 cells. The P-values were calculated using the two-tailed Student’s t test. *P < 0.05. Fig. S7 Regulation of circARID1A and IGF2BP3 to each other in GC cells. A The expression of IGF2BP3 at protein level in SGC7901 and BCG823 cells after circARID1A knockdown. B The expression of IGF2BP3 at RNA level in SGC7901 and BCG823 cells after circARID1A knockdown. C The expression of circARID1A in BGC823 or AGS cells after IGF2BP3 knockdown or overexpression. The P-values were calculated using the two-tailed Student’s t test. Fig. S8 The interference efficiency of circARID1A in SGC7901 and BGC823 cells. A The expression of ARID1A in SGC7901 and BGC823 cells treated with si-circARID1A. B The expression of circARID1A in SGC7901 and BGC823 cells treated with si-circARID1A. The P-values were calculated using the two-tailed Student’s t test. *P < 0.05. Fig. S9 The overexpression of circARID1A in GC cells by using different vectors. A The plasmid profile of pLC5-ciR and overexpression of pLC5-ciR-circARID1A in SGC7901 and BGC823 cells. B The plasmid profile of plv-ciR and overexpression of plv-ciR-circARID1A in SGC7901 and BGC823 cells. C The plasmid profile of pcDNA3.1(+) CircRNA Mini Vector and overexpression of pcDNA3.1-circARID1A in SGC7901 and BGC823 cells. D The overexpression of pLC5-ciR-circPDHK1 in SGC7901 and BGC823 cells. Fig. S10 The expression of SLC7A5 protein after IGF2BP3 overexpression in SGC7901 and BGC823 cells. Fig. S11 The expression of SLC7A5 in GC tissues and cell lines and correlation with IGF2BP3 in GC. A The expression of SLC7A5 mRNA in STAD of TCGA database. B The expression of IGF2BP3 in GC cell lines or normal gastric epithelial cells. C Correlation between SLC7A5 mRNA and IGF2BP3 mRNA in STAD of TCGA database. Fig. S12 The effect of circARID1A knockdown on HGC-27 proliferation. A The viability of HGC-27 cells after circARID1A knockdown. B The plate colony formation of HGC-27 cells after circARID1A knockdown. C The proliferation of HGC-27 after circARID1A knockdown. The P-values were calculated using the two-tailed Student’s t test. *P < 0.05.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.